https://www.selleckchem.com/products/tvb-3664.html The objective was to determine phytase effects on prececal amino acid (AA) digestibility and phytate (InsP6) breakdown when different oilseed meals were used in broiler chicken diets. The study included 14 diets a corn-soybean meal (SBM) basal diet and 6 diets that contained SBM, rapeseed meal (RSM), and sunflower meal (SFM) with 2 inclusion levels at the expense of corn starch (150 and 300 g/kg SBM or SFM, or 100 and 200 g/kg RSM). Each diet was mixed with or without a phytase supplement of 1,500 FTU/kg. Diets were provided to broilers for 5 D. Digesta from the posterior half of the ileum were collected on day 21. The average essential AA digestibility, calculated by a regression approach, without and with phytase was 84 and 85% (SBM), 74 and 77% (SFM), and 66 and 73% (RSM), respectively. In the diets, phytase effects on AA digestibility were lower owing to other protein sources also present in the diet, but significant. Prececal InsP6 disappearance was significantly affected by interactions between oilseed s on ileal content of InsP6 and its degradation products were substantial, they were not related to the effects on AA digestibility.Understanding factors affecting ME availability for productive processes is an important step in optimal feed formulation. This study compared a modelling methodology with the comparative slaughter technique (CST) to estimate energy partitioning to heat production and energy retention (RE) and to investigate differences in heat dissipation. At hatch, 50 broilers were randomly allocated in one of 4 pens equipped with a precision feeding station. From day 14 to day 45, they were either fed with a low-ME (3,111 kcal/kg ME) or a high-ME (3,383 kcal/kg ME) diet. At day 19, birds were assigned to pair-feeding in groups of 6 with lead birds eating ad libitum (100%) and follow birds eating at either 50, 60, 70, 80, or 90% of the paired lead's cumulative feed intake. Heat production and RE w