https://www.selleckchem.com/products/ldk378.html C99 and the production of Aβ.Molecular assembly is crucial in functional molecular materials and devices. Among the molecular interactions that can form assemblies, stacking among π-conjugated molecular backbones plays an essential role in charge transport through organic materials and devices. The single-molecule junction technique allows for the application of an electric field of approximately 108 V/m to the nanoscale junctions and to investigate the electric field-induced assembly at the single-stacking level. Here, we demonstrate an electric field-induced stacking effect between two molecules using the scanning tunneling microscope break junction (STM-BJ) technique and we found an increase in the stacking probability with increasing intensity of the electric field. #link# The combined density functional theory (DFT) calculations suggest that the molecules become more planar under the electric field, leading to the energetically preferred stacking configuration. Our study provides a new strategy for tuning molecular assembly by employing a strong electric field.In a material-guided approach, instructive scaffolds that leverage potent chemistries may efficiently promote bone regeneration. A siloxane macromer has been previously shown to impart osteoinductivity and bioactivity when included in poly(ethylene glycol) diacrylate (PEG-DA) hydrogel scaffolds. Herein, phosphonated-siloxane macromers were evaluated for enhancing the osteogenic potential of siloxane-containing PEG-DA scaffolds. Two macromers were prepared with different phosphonate pendant group concentrations, poly(diethyl(2-(propylthio)ethyl)phosphonate methylsiloxane) diacrylate (PPMS-DA) and 25%-phosphonated analogue (PPMS-DA 25%). Macroporous, templated scaffolds were prepared by cross-linking these macromers with PEG-DA at varying mol % (1585, 3070, and 4555 PPMS-DA to PEG-DA; 3070 PPMS-DA 25% to PEG-DA). Other scaffolds were also prepared by combinin