https://www.selleckchem.com/products/lxs-196.html © 2019 the Author(s), licensee AIMS Press.Vital functions, such as blood pressure, are regulated within a framework of neurovisceral integration in which various factors are involved under normal conditions maintaining a delicate balance. Imbalance of any of these factors can lead to various pathologies. Blood pressure control is the result of the balanced action of central and peripheral factors that increase or decrease. Special attention for blood pressure control was put on the neurovisceral interaction between Angiotensin II and the enzymes that regulate its activity as well as on nitric oxide and dopamine. Several studies have shown that such interaction is asymmetrically organized. These studies suggest that the neuronal activity related to the production of nitric oxide in plasma is also lateralized and, consequently, changes in plasma nitric oxide influence neuronal function. This observation provides a new aspect revealing the complexity of the blood pressure regulation and, undoubtedly, makes such study more motivating as it may affect the approach for treatment. © 2019 the Author(s), licensee AIMS Press.Purpose Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are physiologically relevant gaseous neurotransmitters that are endogenously produced in mammalian tissues. In the present study, we investigated the possibility that NO and CO can regulate the endogenous levels of H2S in bovine isolated neural retina. Methods Isolated bovine neural retina were homogenized and tissue homogenates were treated with a NO synthase inhibitor, NO donor, heme oxygenase-1 inhibitor, and/donor. H2S concentrations in bovine retinal homogenates were measured using a well-established colorimetric assay. Results L-NAME (300 nM-500 µM) caused a concentration-dependent decrease in basal endogenous levels of H2S by 86.2%. On the other hand, SNP (10-300 µM) elicited a concentration-related increase in H2S levels fro