Nasal extranodal natural killer/T-cell lymphoma (ENKL) is a rare clinical entity. It may, however, masquerade as a commonly encountered disease, such as sinusitis. A high index of clinical suspicion of nasal ENKL should be raised when there is inadequate clinical response despite appropriate therapeutic intervention of sinusitis. Biopsy would be warranted and crucial in those instances to make an accurate and timely diagnosis.Herein, we present a method for the quantitative analysis of broflanilide residues in water, soil, and rice samples from a paddy field in Jiangxi Province, China. The quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was optimized for the extraction and purification of broflanilide residues. Residual broflanilide concentrations in different matrices were then determined by high-performance liquid chromatography (HPLC). The calibration curve of broflanilide showed good linearity in all matrices for concentrations between 0.005 and 1 mg·L-1, with a correlation coefficient greater than 0.99. The matrix effect varied from -69% to -54%, indicating matrix suppression. The average recoveries ranged between 85.82% and 97.46%, with relative standard deviations of 3.29%-8.15%. The limits of detection ranged from 0.16 to 1.67 μg·kg-1, and the limits of quantification were in the range of 0.54 to 5.48 μg·kg-1. Dissipation dynamic tests indicated broflanilide half-lives of 0.46-2.46, 2.09-5.34, and 1.31-3.32 days in soil, water, and rice straw, respectively. Broflanilide was dissipated more rapidly in water than in soil and rice straw. More than 90% of broflanilide residues dissipated within 14 days. The final residues of broflanilide in rice were all below LOQ at harvest.Toxicity induced by crizotinib, a small-molecule tyrosine kinase inhibitor, is a significant clinical issue during treatment. A tissue distribution study is required to explore the organs affected by this molecule. https://www.selleckchem.com/products/Gefitinib.html In this study, a simple liquid chromatography tandem mass spectrometry method was developed and validated for the determination of crizotinib in various mouse tissues. Mouse tissue homogenates were processed by protein precipitation with methanol, and apatinib was chosen as the internal standard. The analytes were separated on a Phenomenex Kinetex C18 (50 mm × 2.1 mm, 2.6 μm) column with gradient elution using methanol and 0.3% formic acid water solution. Tandem mass spectrometric detection was conducted using multiple reaction monitoring via an electrospray ionization source in the positive mode. The monitored ion transitions were m/z 450.1 ⟶ 260.2 for crizotinib and m/z 398.2 ⟶ 212.0 for apatinib. The problem of the severe carryover effect was successfully resolved. The method was validated and applied to a tissue distribution study of crizotinib in mice, which was reported for the first time. The results of the study showed that the main target organs of crizotinib were the lung, liver, and spleen, and a high concentration of crizotinib was found in the gastrointestinal tract. This study offers a reliable method for quantifying crizotinib and provides a basis for further research on crizotinib toxicity.A fresh strategy based on two-step electrochemical reduction for the fabrication of palladium nanoparticles/reduced oxide nanocomposite-modified glass carbon electrode (PdNPs/rGO/GCE) was established in this study. Field emission scanning electron microscopy (FESEM) images showed that spherical PdNPs were evenly distributed on the surface of rGO-modified electrode (rGO/GCE), and the introduction of PdNPs has no effect on the morphology of rGO. Electrochemical impedance spectroscopy (EIS) studies revealed that the conductivity of PdNPs/rGO/GCE was higher than that of rGO/GCE and bare GCE. The electrochemical performances of PdNPs/rGO/GCE sensor were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry using ascorbic acid (AA), dopamine (DA), and uric acid (UA) as analytes. At the optimized conditions, wide linear ranges of 0.5-3.5 mM (R2 = 0.99), 3-15 μM (R2 = 0.99) and 15-42 μM (R2 = 0.99), and 0.3-1.4 mM (R2 = 0.99) towards AA, DA, and UA in ternary mixture were observed, respectively. In addition to superior anti-interference capability, fast response (≤5 s), excellent reproducibility, and good long-term stability were also given by this sensor. These results suggested that PdNPs/rGO/GCE is promising for the simultaneous detection of AA, DA, and UA in practical application. To evaluate the amount of ( ) and ( ) on subgingival recolonized plaque after mechanical debridement and photodynamic treatment by using blue light-emitting diodes (LEDs) in combination with topical gel extract. A total of 12 subjects with stage III grade B periodontitis were recruited for the study. Maxillary posterior teeth with periodontal pocket >4 mm were selected. These teeth were examined for periodontal clinical data at baseline and at 1, 2, 4, and 6 weeks after treatment. All remaining teeth were treated by scaling and root planing (SRP). Then, the teeth were bilaterally divided using randomized split-mouth design with and without photodynamic adjunctive therapy (PDT). Samples of the subgingival microbiota were obtained in each visit. All samples were analyzed by multicolor TaqMan real-time polymerase chain reaction (PCR) for the presence of target bacteria. Throughout the six-week follow-up, long-term improvement of probing depth and bleeding on probing was revealed on the PDT group. The number of subgingival and also significantly reduced, compared to the baseline. There was a statistically significant recolonization in and number after 2 and 4 weeks of conventional SRP, respectively. Our quantitative PCR method showed no significant recolonization of those subgingival bacteria on PDT sites throughout the 6-week study duration. The results showed that adjunctive photodynamic treatment by using blue LEDs in combination with topical gel extract was effective to alter the recolonization patterns of and after conventional debridement. The results showed that adjunctive photodynamic treatment by using blue LEDs in combination with topical Curcuma longa gel extract was effective to alter the recolonization patterns of F. nucleatum and P. intermedia after conventional debridement.