https://www.selleckchem.com/products/gw0742.html Short-term high frequency electrostimulation (8-10 Hz) of the isolated isovolumic rat heart rapidly increased the rate of pressure rise and drop and the diastolic pressure. At the same time, the relaxation rate constant (RRC), being independent of the developed pressure, remained unaltered. These findings suggested that diastolic pressure rise was not caused by incomplete myocardial relaxation. Doxorubicin (3 μM) moderately reduced the developed pressure, but the relaxation rate constant remained unchanged. The dynamics and degree of changes in all indicators of the cardiac contractile function in high-frequency stimulation were the same as in control. It can be hypothesized that the initial effect of doxorubicin was not related to ionic transport system disturbances in cardiomyocytes.We studied daily dynamics of proliferative activity of embryonic fibroblast-like cells in culture during the logarithmic growth phase. Daily increase in cell count in the culture showed a 4-day rhythm that persisted over 3 weeks of culturing. In cultures from different animals, the phase of this rhythm was synchronous and did not depend on the moment of cell isolation. It can be hypothesized that the 4-day biorhythm of proliferative activity of embryonic fibroblast-like cells in culture is determined by external environmental factors, probably of electromagnetic nature.We studied changes in the bone tissue in patients with diffuse large B-cell lymphoma at the onset of the disease (N=41; before chemotherapy) and 5-16 years after the end of treatment (N=47). Osteodensitometry, biochemical markers of osteoporosis in the blood and urine, and gene expression in multipotent mesenchymal stromal cells were analyzed. In multipotent mesenchymal stromal cells of all patients, the expression of genes associated with bone and cartilage differentiation (FGF2, FGFR1, FGFR2, BGLAP, SPP1, TGFB1, and SOX9) was changed. In primary patients, the ratio of de