Retinopathy is a leading cause of blindness, and there is currently no cure. Earlier identification of the progression of retinopathy could provide a better chance for intervention. Diet has profound effects on retinal function. A maternal high-fructose diet (HFD) triggers diseases in multiple organs. However, whether maternal HFD impairs retinal function in adult offspring is currently unknown. By using the rodent model of maternal HFD during pregnancy and lactation, our data indicated a reduced b-wave of electroretinography (ERG) in HFD female offspring at 3 mo of age compared with age-matched offspring of dams fed regular chow (ND). Immunofluorescence and Western blot analyses indicated that the distributions and expressions of synaptophysin, postsynaptic density protein 95 (PSD95), and phospho(p)-Ca2+/calmodulin-stimulated protein kinase IIα (CaMKIIα) were significantly suppressed in the HFD group. Furthermore, the ATP content and the mitochondrial respiratory protein, Mt CPX 4-2, were decreased. Moreovergenesis might contribute to the decrease of synaptic plasticity resulting in retinal function suppression. Oral application with coenzyme Q10 for 4 wk could at least partially reverse the aforementioned molecular events and retinal function.Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, ∼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was ales. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.Myoglobin (Mb) is a regulator of O2 bioavailability in type I muscle and heart, at least when tissue O2 levels drop. Mb also plays a role in regulating cellular nitric oxide (NO) pools. Robust binding of long-chain fatty acids and long-chain acylcarnitines to Mb, and enhanced glucose metabolism in hearts of Mb knockout (KO) mice, suggest additional roles in muscle intermediary metabolism and fuel selection. To evaluate this hypothesis, we measured energy expenditure (EE), respiratory exchange ratio (RER), body weight gain and adiposity, glucose tolerance, and insulin sensitivity in Mb knockout (Mb-/-) and wild-type (WT) mice challenged with a high-fat diet (HFD, 45% of calories). In males (n = 10/genotype) and females (n = 9/genotype) tested at 5-6, 11-12, and 17-18 wk, there were no genotype effects on RER, EE, or food intake. https://www.selleckchem.com/products/5-ethynyluridine.html RER and EE during cold (10°C, 72 h), and glucose and insulin tolerance, were not different compared with within-sex WT controls. At ∼18 and ∼19 wk of age, female Mb-/- adiposity was ∼4and point to alternative roles for this protein in muscle and heart.Cellular redox changes are common in apoptosis, immune function, signaling pathways and cancer. The authors aimed to develop a single-wavelength method using the superior fluorescence sensitivity of a flow cytometer for measuring redox-sensitive green fluorescent protein signal during oxidative stress in cell lines. The single-wavelength method was able to discern small differences in oxidative stress between cell lines and between the cytoplasmic and mitochondrial compartments within the same cell line. In Chinese hamster ovary cells, the mitochondrial matrix compartment was more sensitive to oxidative stress compared with MDA-MB-231 cells, and the rapid changes in redox state were followed by a slow recovery phase. The authors conclude that this simplified method is useful and preferred for studies where alterations in overall redox-sensitive green fluorescent protein expression are controlled.Preexisting or new onset of hypertension affects pregnancy and is one of the leading causes of maternal and fetal morbidity and mortality. In certain cases, it also leads to long-term maternal cardiovascular complications. The placenta is a key player in the pathogenesis of complicated hypertensive pregnancies, however the pathomechanisms leading to an abnormal placenta are poorly understood. In this study, we compared the placental proteome of two pregnant hypertensive models with their corresponding normotensive controls a preexisting hypertension pregnancy model (stroke-prone spontaneously hypertensive rats; SHRSP) versus Wistar-Kyoto and the transgenic RAS activated gestational hypertension model (transgenic for human angiotensinogen Sprague-Dawley rats; SD-PE) versus Sprague-Dawley rats, respectively. Label-free proteomics using nano LC-MS/MS was performed for identification and quantification of proteins. Between the two models, we found widespread differences in the expression of placental proteins including those related to hypertension, inflammation, and trophoblast invasion, whereas pathways such as regulation of serine endopeptidase activity, tissue injury response, coagulation, and complement activation were enriched in both models. We present for the first time the placental proteome of SHRSP and SD-PE and provide insight into the molecular make-up of models of hypertensive pregnancy. Our study informs future research into specific preeclampsia and chronic hypertension pregnancy mechanisms and translation of rodent data to the clinic.Background Renin-angiotensin system blockers (RASBs) have well-validated benefit in patients with hypertension, coronary artery disease, and left ventricular systolic dysfunction. Their use in the perioperative period, however, has been controversial, including in patients undergoing cardiac surgery, who often have a strong indication for their use. In the current study, we explore the impact of RASB use with 30-day and 1-year mortality after cardiac surgery. Methods and Results The Veterans Affairs Surgical Quality Improvement Program and Corporate Data Warehouse were data sources for this retrospective cohort study. A total of 37 197 veterans undergoing elective coronary artery bypass grafting and or valve repair or replacement over a 10-year period met inclusion criteria and were stratified into 4 groups by preoperative exposure (preoperative exposure versus no preoperative exposure) and postoperative continuing exposure (current exposure versus no current exposure) to RASBs. After adjusting for all baseline covariates, the preoperative exposure/current exposure group had lower 30-day and 1-year mortality than the preoperative exposure/no current exposure (30-day hazard ratio [HR], 0.