https://www.selleckchem.com/products/troglitazone-cs-045.html Despite the ubiquity of physical systems evolving on time-dependent spatial domains, understanding their regular and chaotic dynamics is still in a rudimentary state. While chaos implies that the system's behavior can be altered by small perturbations, this sensitivity proves to be useful for control purposes. Here we report on the experimental discovery of a novel mechanism to control chaos by time-variation of the system (spatial domain) size depending upon the rate of the latter, the chaotic state may be completely prevented. Our experimental observations are disentangled with theoretical insights and numerical modeling, which also reveals the ability to control spatio-temporal chaos, thus making the findings relevant to a wide range of natural phenomena.Night shift workers are often associated with circadian misalignment and physical discomfort, which may lead to burnout and decreased work performance. Moreover, the irregular work hours can lead to significant negative health outcomes such as poor eating habits, smoking, and being sedentary more often. This paper uses commercial wearable sensors to explore correlates and differences in the level of physical activity, sleep, and circadian misalignment indicators among day shift nurses and night shift nurses. We identify which self-reported assessments of affect, life satisfaction, and sleep quality, are associated with physiological and behavioral signals captured by wearable sensors. The results using data collected from 113 nurses in a large hospital setting, over a period of 10 weeks, indicate that night shift nurses are more sedentary, and report lower levels of life satisfaction than day-shift nurses. Moreover, night shift nurses report poorer sleep quality, which may be correlated with challenges in their attempts to fall asleep on off-days.BRCA1 is a well-studied tumor suppressor involved in the homologous repair of DNA damage, whereas PINK1, a