https://www.selleckchem.com/products/d-galactose.html Background The physiological mechanisms underlying the development of respiratory hypersensitivity to cisplatin (CDDP) are not well-understood. It has been suggested that these reactions are likely the result of type I hypersensitivity, but other explanations are plausible and the potential for CDDP to induce type I hypersensitivity responses has not been directly evaluated in an animal model. Objectives and Methods To investigate CDDP hypersensitivity, mice were topically sensitized through application of CDDP before being challenged by oropharyngeal aspiration (OPA) with CDDP. Before and immediately after OPA challenge, pulmonary responses were assessed using whole body plethysmography (WBP). Results CDDP did not induce an immediate response or alter the respiratory rate in sensitized mice. Two days later, baseline enhanced pause (Penh) values were significantly elevated (p  less then  0.05) in mice challenged with CDDP. When challenged with methacholine (Mch) aerosol, Penh values were significantly elevated (p  less then  0.05) in sensitized mice and respiratory rate was reduced (p  less then  0.05). Lymph node cell counts and immunoglobulin E levels also indicated successful sensitization to CDDP. Irrespective of the sensitization state of the mice, the number of neutrophils increased significantly in bronchoalveolar lavage fluid (BALF) following CDDP challenge. BALF from sensitized mice also contained 2.46 (±0.8) × 104 eosinophils compared to less than 0.48 (±0.2) × 104 cells in non-sensitized mice (p  less then  0.05). Conclusions The results from this study indicate that dermal exposure to CDDP induces immunological changes consistent with type I hypersensitivity and that a single respiratory challenge is enough to trigger pulmonary responses in dermally sensitized mice. These data provide previously unknown insights into the mechanisms of CDDP hypersensitivity.Tissue contaminants in anatomical pathology a