https://www.selleckchem.com/products/ps-1145.html 9% voltage after 24 h at 100 mA cm-2.Enabling materials with distinct features toward achieving high-performance energy storage devices is of huge importance but highly challenging. Commercial carbon cloth (CC), because of its appealing chemical and mechanical properties, has been proven to be an excellent conductive substrate for active electrode materials. However, its performance is notably poor when directly used as an electrode in energy storage, due to its low theoretical capacity and surface area. Herein, we successfully endow the CC with enhanced storage capacity via formation of a π-π stacking interaction by integrating electrochemically activated CC (denoted CC/ACC) with biomass-derived carbon (BMDC) (denoted π-CC/ECC@BMDC). The π-CC/ECC@BMDC electrode displays excellent storage performance with a high capacity of 2.53 mAh cm-2 under 0.2 mA cm-2 when used as anode material for lithium ion batteries (LIBs). Due to the induction energy, the negatively charged molecules of the CC/ACC functional groups interact with the BMDC during carbonization, creating the π-π stacking interaction. Based on first-principles calculations, the structural design of the tri-layer carbon enables the movement of electrons around the π-π stacking interaction, which significantly facilitates rapid transportation of electrons, creates three-dimensional (3D) ion tunnels for fast transportation of ions, and improves the electrode's mechanical and electronic properties.As the toll of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues, efforts are ongoing to identify new agents and repurpose safe drugs for its treatment. Antimalarial peroxides have reported antiviral and anticancer activities. Here, we evaluated the in vitro activities of artesunate (AS) and two ozonides (OZ418 and OZ277) against human α-coronavirus NL63 and β-coronaviruses OC43 and SARS-CoV-2 in several cell lines. OZ418 had the best sel