https://www.selleckchem.com/products/i-138.html The synthesis of a sustainable material through carbon nitride (C3N4) chemically grafted on waste-derived carbon including carbonizing coals (PM), melamine-urea-formaldehyde resins (MUF-C-1100), and luffa cylindrical sponges (SG), respectively, and its application as sulfur cathode in lithium-sulfur (Li-S) batteries were demonstrated. The Li-S cell assembled by the sulfur (S) cathode with component from C3N4grafted coal-derived carbon (PM-CN) possesses a specific capacity of 1269.8 mA h g-1at 0.05 C. At 1 C, the initial specific capacity of PM cathode is only 380.0 mA h g-1, comparable to the PM-CN5 cathode of 681.9 mA h g-1, and PM-CN10 cathode of 580.7 mA h g-1, respectively. And, PM-CN 5 cathode presents the capacity retention of 75.9% with a coulomb efficiency (C.E.) of 97.3% after 200 cycles. The MUF-CN cathode gives a specific capacity of 1335.6 mA h g-1at 0.05 C, and the capacity retention of 66.7% with a C. E. of 93.6% after 300 cycles at 0.5 C. The SG-CN cathode had a specific capacity of 953.9 mA h g-1at 0.05 C, and capacity retention of 95.1% with a C. E. of 98.2% after 125 cycles at 1 C. The remarkable improved performances were mainly ascribed to the sustainable materials as S host with micro-meso pore and C3N4structure providing the strong affinity N sites to lithium polysulfides (LiPSs). This work provides an attractive approach for the preparation of sustainable materials by rational design of grafting C3N4to waste-derived carbons with functions as S cathode materials for high-performance Li-S batteries.The Most Likely Path formalism (MLP) is widely established as the most statistically precise method for proton path reconstruction in proton computed tomography (pCT). However, while this method accounts for small-angle Multiple Coulomb Scattering (MCS) and energy loss, inelastic nuclear interactions play an influential role in a significant number of proton paths. By applying cuts based on energy and di