https://www.selleckchem.com/products/pfi-3.html Many studies have focused on the significant role of biofilm formation by Bacillus in the biocontrol process. Bacillus pumilus HR10 is a plant growth-promoting rhizobacterium with multiple biocontrol functions, including promoting growth, controlling pathogens, and assisting in the formation of mycorrhizae. Currently, there is no relevant report on the biofilm formation of B. pumilus HR10 and its influencing factors. B. pumilus HR10 was found to easily form a stable biofilm structure on the surface of media, with awesome swarming ability. The optimum temperature for biofilm formation was 37 °C. B. pumilus HR10 formed most obviously at pH 7.0 and was not extremely sensitive to acidic or alkaline conditions. Most of the polysaccharide components of plant root exudates promoted the biofilm formation by B. pumilus HR10, with glucose having the greatest promoting effect. Low concentrations of Fe2+, Mg2+, Ca2+, K+, and Na+ enhanced biofilm formation. In summary, biofilm formation can improve the tolerance of B. pumilus HR10 to salt and certain heavy metal ion stresses and contribute to its application in different plants and soils with high salinity or heavy metals in the field.The present work investigated the effect of camel's fetal fluids on a variety of bacterial and fungal pathogens. Ten samples of camel's amniotic and allantoic fluids were collected aseptically during parturition and their antimicrobial activities were evaluated by disc diffusion method and minimum inhibitory concentration (MIC) assay. The majority of tested pathogens were inhibited by both fluids up to 25% concentration. The fluids showed zones of inhibition ranging from 8 to 30 mm. The most pronounced inhibition was detected for Staphylococcus aureus, Listeria monocytogenes, Klebsiella pneumonia, and Aspergillus niger but the weak inhibition was obtained for Enterococcus faecalis, Bacillus subtilis, and Candida albicans. Also, the MIC values of amnio