One can roughly judge the adaptability of bioleaching of silicon in EMR using Paenibacillus mucilaginosus if the main form of silicate minerals in EMR is determined.In this work, a miniaturized flow-through leaching test is presented for rapid screening of potential chemical extractants to explore the bioaccessibility of lead (Pb) in contaminated shooting range soils in Valkeala, Finland. The method combines the versatility of microcolumn-based extraction methods with on-line inductively coupled plasma optical emission spectrometry (ICP OES) analysis for expedient assessment of the magnitude of the bioaccessible pools and the leaching kinetics of lead from polluted soils under variable physicochemical scenarios. Acids and salt solutions were studied as potential extractants. The efficiency of the extractants relative to the initial total amount of lead in the soil sample (509 ± 21 mg/kg) were found to increase in the following order 0.11 M acetic acid (55%) less then 1 M MgCl2 (58%) less then 0.1 M NH2OH·HCl (61%) less then 0.1 M citric acid (93%) less then 0.1 M HCl (96%). The proposed on-line microcolumn-based method was further explored for implementation of txtraction process and provides a time-saving assessment of potential chemical extractants.Pharmaceuticals and personal care products (PPCPs) has been of concerns for their potential threats to ecosystems and human's health for decades. PPCPs have been detected in water environments worldwide and have been identified in water sources and finished water. To elucidate the potential exposure of PPCPs in drinking water, this study assessed the occurrences and treatment efficiencies of PPCPs in the drinking water of Taiwan. Raw and finished water samples collected from five main drinking water treatment plants (DWTPs) in February, June, and November 2018 were analyzed. Furthermore, laboratory-scale water treatment processes were conducted to evaluate the treatment efficiencies of these chemicals. Most of the water samples from the DWTPs had a low concentration ( less then 30 ng/L) of PPCPs. Only samples from a DWTP was observed to have higher concentration of ibuprofen (55.6 ng/L), benzophenone (92.5 ng/L), caffeine (390.5 ng/L), and diethyltoluamide (DEET) (434.9 ng/L) in raw water than others. The results of laboratory simulations indicated that the pre-chlorination process was the key step responsible for the removal of PPCPs in conventional water treatment processes, which can remove most of the hormone treatment products, parabens, oxybenzone, and acetaminophen in water sources. However, the filtration process with anthracite as a medium could remove some of the parabens (approximately 11.9%-41.2%), hormones (approximately 18.2%-44.8%), suntan lotions (37.5%-68.8%), and naproxen (30.1%) from Milli-Q water. The removal efficiencies of the aforementioned chemicals were marginally lower in raw water. However, analgesics, caffeine, and DEET cannot be removed effectively through conventional drinking water treatment.Dichloroacetonitrile (DCAN) is one of the most toxic and common nitrogenous disinfection by-products in water treatment. It is necessary to understand how this compound can be removed. In this study, the effectiveness of vacuum ultraviolet (VUV) at 185 nm was evaluated to destroy DCAN. When water is exposed to VUV, hydroxyl radicals (HO•), hydrogen atoms (H•), and hydrated electrons (eaq-) are generated. The individual contributions of these reactive species to DCAN degradation were distinguished using multiple scavengers. The results showed that eaq- was the most important species for DCAN degradation. The second-order rate constant for eaq- reacting with DCAN was calculated to be 3.16 × 1010 M-1s-1 using a quantitative structure-activity relationship (QSAR) method adopted from previous study, and determined to be 3.76 (±0.02) × 1010 M-1s-1 by competition kinetics. Although dissolved oxygen (DO) at 8 mg/L consumed 86% eaq-, the rest of eaq- still led to 93% removal of DCAN within 20 min. Chloride was the major inorganic product of DCAN degradation, while nitrate and nitrite were minor products. Quantum chemical calculation and mass balance calculation under an oxygen free condition further suggested that cleavage of C-Cl bonds was the major pathway by eaq- attack. This study demonstrated the significant role of eaq- in micropollutant destruction during VUV treatment.Systemic neurotoxic insecticides are widely used to control aphid pests worldwide and their potential non-target effects on aphid predators are often unknown. Behavioral responses linked to biological control services are crucial when assessing the compatibility of chemicals with biocontrol organisms. This is particularly relevant for insecticides at low and sublethal concentrations. We studied the acute toxicity and the sublethal effect on the voracity of the generalist predator Harmonia axyridis (Coleoptera Coccinellidae) caused by the exposure to three systemic insecticides routinely used against aphids. The tested insecticide concentrations were the Lethal Concentration 50% (LC50), 20% (LC20) and 1% (LC1) estimated for the target pest Aphis gossypii (Hemiptera Aphididae) in a companion study. The survival and the voracity differed among the tested chemicals and concentrations, but only thiamethoxam at LC50 caused a significant predator mortality, and individuals that survived showed a reduced predation rate. The predators showed a density independent functional response after the exposure to most of the insecticide-concentration combinations, while an inverse density dependence of the prey consumption rate was observed for coccinellids exposed to sulfoxaflor and thiamethoxam at their lowest tested concentration. The estimated parameters, i.e., the attack rate and the prey handling time, were affected at higher concentrations by both imidacloprid and sulfoxaflor. These findings stress the importance of carefully evaluating side effects of insecticides at very low concentrations on beneficial arthropods in the risk assessment schemes for sustainable pest control programmes.Biodegradable mulch films are an alternative to polyethylene films used in agriculture for weed control, improving crop productivity. https://www.selleckchem.com/products/zanubrutini-bgb-3111.html This change could minimize the residue production and costs related to the final disposal. Nevertheless, the environmental safety of these biodegradable products is scarcely investigated. In this work, samples of poly(butylene adipate-co-terephthalate)-PBAT mulch films, with and without UV stabilizer additives, were prepared. Aqueous extracts of soil samples, where mulch films were disposed, were investigated using bioassays with Lactuca sativa, Allium cepa, and cell culture HepG2/C3A. As PBAT is expected to suffer photodegradation and biodegradation, soil samples mixed with films before and after these processes were evaluated. Soil aqueous extracts promoted root grown (mainly hypocotyl) of L. sativa, probably due to presence of nutrients. So, to evaluate toxicity potential, in this case it was necessary to use aqueous extract prepared with soil instead of ultrapure water as the control.