https://www.selleckchem.com/products/pf-03084014-pf-3084014.html By combining the four pollution source factors with bootstrap runs, the accuracy of the four pollution source factors were reliable based on PMF model. The median values in the BS runs was considered the most true factor contribution, and the 5th-95th quartile interval represents the variability of each factor, Factor 4 (traffic source) R2 was 0.70 and lower variability. The highest CV value usually means a significantly deviation degree. In this study, the CV values of Cr in Factor 1, Cu, Zn, and Ni in Factor 2, Hg, and As in Factor 3, Pb, and Cd in Factor 4 were lower, indicates a lower deviation degree. and with the lowest content among heavy metals usually was also with the greatest uncertainties. In this study improves understanding of the reduction of heavy metal pollution in cultivated soil, and also serves as reference for pollution source apportionment in other regions.Environmental cadmium (Cd) exposure can cause several pulmonary diseases. Epithelial-mesenchymal transition (EMT) involved in the process of chronic obstructive pulmonary disease (COPD). However, the association between environmental Cd exposure and EMT was unclear in COPD patients. This study aimed to analyze the associations among circulatory Cd, EMT and COPD based on case-control study. Four hundred COPD patients and 400 control subjects were recruited. Circulatory Cd was detected using atomic adsorption spectrometer. MicroRNA-30 (miR-30) was measured by RT-PCR and the markers of pulmonary EMT were evaluated through western blotting. Circulatory Cd concentration was increased and serum miR-30 was decreased in COPD patients. Circulatory Cd was inversely associated with pulmonary function in COPD patients. Moreover, serum miR-30 was gradually decreased in parallel with FEV1 in COPD patients. Meanwhile, there was a negative association between serum miR-30 and circulatory Cd in COPD patients. Further analysis found that E-cadher