Quantitative RT-PCR showed that the mgTLR5 gene of the goose is widely expressed in all tested tissues, with the highest expression in the kidney and spleen. The increase in NF-κB promoter activity stimulated by flagellin was dependent on mgTLR5 expression in 293 T cells. Salmonella pullorum and flagellin significantly upregulated the expression of TLR5, IL-8, and IL-1 mRNA in peripheral blood mononucleotide cells of Magang goose cultured in vitro. Stimulation by S. pullorum for 24 h upregulated mgTLR5 expression in the cecum and kidney. We conclude that Magang goose TLR5 is a functional TLR5 homologue of the protein in other species and plays an important role in bacterial recognition.Heterogeneous electro-Fenton (e-Fenton) is a promising technology for the treatment of persistent organic pollutants, in which H2O2 is produced via 2e- oxygen reduction and is simultaneously activated into •OH by the iron-based catalyst. This system often suffers from the inevitable metal dissolution in the acidic or even neutral environment, leading to poor pH adaptation and low stability. In this work, we designed a metal-free e-Fenton system, using O-doped carbon nanotubes (OCNTs) as the bifunctional metal-free cathode for the degradation of organic pollutants. The system showed the excellent e-Fenton performance under neutral conditions with the phenol degradation kinetic constant of 0.071 min-1, and the corresponding TOC removal was 76.6% within 300 min. It also exhibited excellent performance for actual coking wastewater treatment with the specific energy consumption of 7.4 kW h kg-1 COD-1, which was lower than that reported heterogeneous electro-Fenton system (9.2-14.4 kW h kg-1 COD-1). The in-situ metal-free e-Fenton system could be regarded as a promising strategy for actual wastewater treatment.Foliar uptake of nanoplastics could represent a pathway responsible for pollutant loads in crop plants, thereby posing risks to human health. To evaluate the foliar uptake, leaf-to-root translocation of nanoplastics, as well as the influences of surface charge on the above processes and physiological effects to plants, maize (Zea mays L.) seedlings were foliar exposed to carboxyl-modified polystyrene nanoplastics (PS-COOH) and amino-modified polystyrene nanoplastics (PS-NH2), respectively. Both PS nanoplastics could effectively accumulate on the maize leaves, accompanied by observable particle aggregation. Due to electrostatic attraction to the negatively charged cell wall, positively charged PS-NH2 association with the leaf surfaces was significantly more than negatively charged PS-COOH. The fraction of PS nanoplastics entry into the leaves could efficiently transfer to the vasculature mainly through stomatal opening and move down to the roots through vascular bundle. Meanwhile, the occurrence of aggregation limited the nanoplastic translocation to the roots, especially for PS-NH2 with larger aggregate sizes relative to PS-COOH. Compared with negatively charged PS-COOH, positively charged PS-NH2 treatment had a higher inhibitory effect on photosynthesis and a stronger stimulation to the activity of antioxidant systems. Overall, our findings give a scientific basis for the risk assessment of nanoplastic exposure in air-plant systems.Microplastics (1 - 5000 µm) are pervasive in every compartment of our environment. However, little is understood regarding the concentration and size distribution of microplastics in road dust, and how they change in relation to human activity. Within road dust, microplastics move through the environment via atmospheric transportation and stormwater run-off into waterways. Human exposure pathways to road dust include dermal contact, inhalation and ingestion. In this study, road dust along an urban to rural transect within South-East Queensland, Australia was analysed using Accelerated Solvent Extraction followed by pyrolysis Gas Chromatography-Mass Spectrometry (Pyr-GC/MS). Polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, poly (methyl methacrylate) and polyethylene were quantified. Microplastic concentrations ranged from ~0.5 mg/g (rural site) to 6 mg/g (Brisbane city), consisting primarily of polyvinyl chloride (29%) and polyethylene terephthalate (29%). Size fractionation ( less then 250 µm, 250-500 µm, 500-1000 µm, 1000-2000 µm and 2000-5000 µm) established that the less then 250 µm size fraction contained the majority of microplastics by mass (mg/g). Microplastic concentrations in road dust demonstrated a significant relationship with the volume of vehicles (r2 = 0.63), suggesting traffic, as a proxy for human movement, is associated with increased microplastic concentrations in the built environment.The functions of the neuronal microtubule-associated protein Tau in the central nervous system are regulated by manifold posttranslational modifications at more than 50 sites. Tau in healthy neurons carries multiple phosphate groups, mostly in its microtubule assembly domain. Elevated phosphorylation and aggregation of Tau are widely considered pathological hallmarks in Alzheimer's disease (AD) and other tauopathies, triggering the quest for Tau posttranslational modifications in the disease context. However, the phosphorylation patterns of physiological and pathological Tau are surprisingly similar and heterogenous, making it difficult to identify specific modifications as therapeutic targets and biomarkers for AD. We present a concise summary of - and view on - important previous and recent advances in Tau phosphorylation analysis in the context of AD.THB1 is a monomeric truncated hemoglobin (TrHb) found in the cytoplasm of the green alga Chlamydomonas reinhardtii. The canonical heme coordination scheme in hemoglobins is a proximal histidine ligand and an open distal site. In THB1, the latter site is occupied by Lys53, which is likely to facilitate Fe(II)/Fe(III) redox cycling but hinders dioxygen binding, two features inherent to the NO dioxygenase activity of the protein. https://www.selleckchem.com/products/lurbinectedin.html TrHb surveys show that a lysine at a position aligning with Lys53 is an insufficient determinant of coordination, and in this study, we sought to identify factors controlling lysine affinity for the heme iron. We solved the "Lys-off" X-ray structure of THB1, represented by the cyanide adduct of the Fe(III) protein, and hypothesized that interactions that differ between the known "Lys-on" structure and the Lys-off structure participate in the control of Lys53 affinity for the heme iron. We applied an experimental approach (site-directed mutagenesis, heme modification, pH titrations in the Fe(III) and Fe(II) states) and a computational approach (MD simulations in the Fe(II) state) to assess the role of heme propionate-protein interactions, distal helix capping, and the composition of the distal pocket.