https://www.selleckchem.com/products/sulbactam-pivoxil.html Specialization to extreme environments is often considered an evolutionary dead-end, leading to irreversible adaptations and reduced evolvability. There is, however, mixed evidence for this macroevolutionary pattern, and limited data from speciose lineages. Here, we tested the effect of habitat specialization to hypersaline waters in the diversification rates of aquatic beetles of the genus Ochthebius (Coleoptera, Hydraenidae), using a molecular phylogeny with more than 50% of the 546 recognized species, including representatives of all but one of the nine recognized subgenera and 17 species groups. Phylogenies were built combining mitochondrial and nuclear genes, with the addition of 42 mitochondrial genomes. Using Bayesian methods of character reconstruction, we show that hypersaline tolerance is an irreversible ecological specialization that arose multiple times. Two lineages of Ochthebius experienced a significant increase in diversification rates, one of them inhabiting hypersaline waters, but there was no overall correlation with habitat or any significant decrease in diversification rates despite the irreversibility of hypersaline tolerance. Our study tested for the first time the impact of hypersaline habitat specialization on diversification rates, finding no support for it to be an evolutionary dead-end. On the contrary, multiple and ancient lineages fully adapted to these extreme osmotic conditions have persisted and diversified over a long evolutionary timescale.In a longitudinal study, measures of key variables might be incomplete or partially recorded due to drop-out, loss to follow-up, or early termination of the study occurring before the advent of the event of interest. In this paper, we focus primarily on the implementation of a regression model with a randomly censored predictor. We examine, particularly, the use of inverse probability weighting methods in a generalized linear model (GLM)