The purpose of this study was to investigate the utility of the width-to-length ratio for the differentiation of ameloblastomas and odontogenic keratocysts in the body of the mandible. This study retrospectively reviewed 9 patients with ameloblastomas and 9 patients with odontogenic keratocysts using cone-beam computed tomography. The width-to-length ratio was determined by measuring the ratio between the greatest buccolingual dimension and the greatest perpendicular anteroposterior dimension of the lesion on the axial view. One-way analysis of variance was used to examine the difference in the width-to-length ratio between the 2 types of lesions. Statistical significance was tested at <0.05. Ameloblastomas showed a mean width-to-length ratio of 0.64, whereas odontogenic keratocysts showed a mean width-to-length ratio of 0.41. The cut-off value with which the 2 types of lesions were differentiated was 0.5. The width-to-length ratios of ameloblastomas were significantly higher than those of odontogenic keratocysts ( <0.05). The width-to-length ratio might be used to differentiate between ameloblastomas and odontogenic keratocysts. The width-to-length ratio might be used to differentiate between ameloblastomas and odontogenic keratocysts. This study investigated correlations between findings on panoramic radiographs and cone-beam computed tomography (CBCT) to assess the relationship between the maxillary sinus floor and the roots of maxillary posterior teeth. In addition, radiographic signs indicating actual root protrusion into the maxillary sinus were evaluated on panoramic radiographs. Paired panoramic radiographs and CBCT images from 305 subjects were analyzed. This analysis classified 2,440 maxillary premolars and molars according to their relationship with the maxillary sinus floor on panoramic radiographs and CBCT images. In addition, interruption of the sinus floor was examined on panoramic radiographs. Root protrusion into the maxillary sinus occurred most frequently in the mesiobuccal roots of the second molars. The classification according to panoramic radiographs and CBCT images was the same in more than 90% of cases when there was no contact between the root apex and the sinus floor. When the panoramic radiograph showed root protrusion into the sinus, the CBCT images showed the same classification in 67.5% of second molars, 48.8% of first molars, and 53.3% of second premolars. There was a statistically significant relationship between interruption of the sinus floor on panoramic radiographs and root protrusion into the sinus on CBCT images. The presence of root protrusion into the sinus on panoramic radiographs demonstrated a moderate ability to predict root protrusion into the maxillary sinus. https://www.selleckchem.com/products/pixantrone-maleate.html Interruption of the maxillary sinus floor could be considered an indicator of actual root protrusion into the maxillary sinus. The presence of root protrusion into the sinus on panoramic radiographs demonstrated a moderate ability to predict root protrusion into the maxillary sinus. Interruption of the maxillary sinus floor could be considered an indicator of actual root protrusion into the maxillary sinus. The diagnosis of chronic rhinosinusitis requires a comprehensive knowledge of the signs and symptoms of the disease and an accurate radiographic assessment. Computed tomography (CT) is the superior imaging modality for diagnosis of chronic rhinosinusitis. However, considering the lower dose and higher resolution of cone-beam computed tomography (CBCT) compared to CT, this study aimed to assess the agreement between the findings of CBCT and functional endoscopic sinus surgery (FESS). This descriptive prospective study evaluated 49 patients with treatment-resistant chronic rhinosinusitis who were candidates for FESS. Preoperative CBCT scans were obtained before patients underwent FESS. The agreement between the CBCT findings and those of FESS was determined using the kappa correlation coefficient. The frequency of anatomical variations of the paranasal sinuses was also evaluated on CBCT scans. Significant agreement existed between pathological findings on CBCT scans and those of FESS, such that the kappa correlation coefficient was 1 for mucosal thickening, 0.644 for nasal deviation, 0.750 for concha bullosa, 0.918 for nasal polyp, 0.935 for ostiomeatal complex (OMC) obstruction, and 0.552 for infundibulum thickening. Furthermore, 95.9% of patients had 1 or more and 79.6% had 2 or more anatomical variations, of which nasal deviation was the most common (67.3%). Considering the significant agreement between the findings of CBCT and FESS for the detection of pathological changes in the paranasal sinuses, CBCT can be used prior to FESS to detect chronic rhinosinusitis and to assess anatomical variations of the OMC. Considering the significant agreement between the findings of CBCT and FESS for the detection of pathological changes in the paranasal sinuses, CBCT can be used prior to FESS to detect chronic rhinosinusitis and to assess anatomical variations of the OMC. The detection and exact localization of penetrating foreign bodies are crucial for the appropriate management of patients with dentoalveolar trauma. This study compared the efficacy of cone-beam computed tomography (CBCT) and spiral computed tomography (CT) scans for the detection of different foreign bodies composed of 5 frequently encountered materials in 2 sizes. The effect of the location of the foreign bodies on their visibility was also analyzed. In this in vitro study, metal, tooth, stone, glass, and plastic particles measuring 1×1×1 mm and 2×2×2 mm were prepared. They were implanted in a sheep's head in the tongue muscle, nasal cavity, and at the interface of the mandibular cortex and soft tissue. CBCT and spiral CT scans were taken and the visibility of foreign bodies was scored by 4 skilled maxillofacial radiologists who were blinded to the location and number of foreign bodies. CT and CBCT were equally accurate in visualizing metal, stone, and tooth particles of both sizes. However, CBCT was better for detecting glass particles in the periosteum. Although both imaging modalities visualized plastic particles poorly, CT was slightly better for detecting plastic particles, especially the smaller ones. Considering the lower patient radiation dose and cost, CBCT can be used with almost equal accuracy as CT for detecting foreign bodies of different compositions and sizes in multiple maxillofacial regions. However, CT performed better for detecting plastic particles. Considering the lower patient radiation dose and cost, CBCT can be used with almost equal accuracy as CT for detecting foreign bodies of different compositions and sizes in multiple maxillofacial regions. However, CT performed better for detecting plastic particles.