https://www.selleckchem.com/products/bexotegrast.html We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ^199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_n=(0.0±1.1_stat±0.2_sys)×10^-26  e.cm.By means of high-resolution numerical simulations, we compare the statistical properties of homogeneous and isotropic turbulence to those of the Navier-Stokes equation where small-scale vortex filaments are strongly depleted, thanks to a nonlinear extra viscosity acting preferentially on high vorticity regions. We show that the presence of such smart small-scale drag can strongly reduce intermittency and non-Gaussian fluctuations. Our results pave the way towards a deeper understanding on the fundamental role of degrees of freedom in turbulence as well as on the impact of (pseudo)coherent structures on the statistical small-scale properties. Our work can be seen as a first attempt to develop smart-Lagrangian forcing or drag mechanisms to control turbulence.Ever since Nikuradse's experiments on turbulent friction in 1933, there have been theoretical attempts to describe his measurements by collapsing the data into single-variable functions. However, this approach, which is common in other areas of physics and in other fields, is limited by the lack of rigorous quantitative methods to compare alternative data collapses. Here, we address t