Qianggan formula, a designed prescription according to the Traditional Chinese Medicine (TCM) theory, is widely used in treating chronic liver diseases, and indicated to prevent blood glucose increase in patients via unknown mechanisms. To unravel the effects and underlying mechanisms of Qianggan formula on hyperglycemia, we administrated Qianggan extract to high fat and high sucrose (HFHS) diet rats. Results showed that four-week Qianggan extract intervention significantly decreased serum fasting blood glucose, hemoglobin A1c, and liver glycogen levels. Gas chromatography-mass spectrometry (GC-MS) approach was employed to explore metabolomic profiles in liver and fecal samples. By multivariate and univariate statistical analysis (variable importance of projection value > 1 and p value less then 0.05), 44 metabolites (18 in liver and 30 in feces) were identified as significantly different. Hierarchical cluster analysis revealed that most differential metabolites had opposite patterns between pair-wise groups. Qianggan extract restored the diet induced metabolite perturbations. Metabolite sets enrichment and pathway enrichment analysis revealed that the affected metabolites were mainly enriched in glycometabolism pathways such as glycolysis/gluconeogenesis, pentose phosphate pathway, fructose, and mannose metabolism. By compound-reaction-enzyme-gene network analysis, batches of genes (e.g. Hk1, Gck, Rpia, etc) or enzymes (e.g. hexokinase and glucokinase) related to metabolites in enriched pathways were obtained. Our findings demonstrated that Qianggan extract alleviated hyperglycemia, and the effects might be partially due to the regulation of glycometabolism related pathways.Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies, which ranks the third leading cause of cancer-related death worldwide. The screening of anti-HCC drug with high efficiency and low toxicity from traditional Chinese medicine (TCM) has attracted more and more attention. As a TCM, Chinese dragon's blood has been used for the treatment of cardiovascular illness, gynecological illness, skin disorder, otorhinolaryngological illness, and diabetes mellitus complications for many years. However, the anti-tumor effect and underlying mechanisms of Chinese dragon's blood remain ill-defined. Herein we have revealed that Chinese dragon's blood EtOAc extract (CDBEE) obviously suppressed the growth of human hepatoma HepG2 and SK-HEP-1 cells. Moreover, CDBEE inhibited the migration and invasion of HepG2 and SK-HEP-1 cells. Additionally, CDBEE displayed good in vitro anti-angiogenic activity. Importantly, CDBEE treatment significantly blunted the oncogenic capability of HepG2 cells in nude mice. Mechanistically, CDBEE inhibited Smad3 expression in human hepatoma cells and tumor tissues from nude mice. Using RNA interference, we demonstrated that CDBEE exerted anti-hepatoma activity partially through down-regulation of Smad3, one of major members in TGF-β/Smad signaling pathway. Therefore, CDBEE may be a promising candidate drug for HCC treatment, especially for liver cancer with aberrant TGF-β/Smad signaling pathway.Ubiquitin-specific protease 5 (USP5) is a deubiquitinating enzyme that functions as an oncoprotein in a variety of human cancers. However, the expression and role of USP5 in the metastasis of non-small cell lung cancer (NSCLC) have not been addressed. In this study, we examined the expression and prognostic significance of USP5 in NSCLC. The results revealed that USP5 was overexpressed and correlated with metastasis and overall survival in NSCLC tissues. A further in vitro study revealed that the levels of USP5 protein in NSCLC cells were associated with epithelial-mesenchymal transition (EMT) markers. Furthermore, USP5 overexpression significantly enhanced, whereas USP5 silencing significantly decreased the expression of EMT proteins and migration and invasion of NSCLC cells. In addition, the results from western blotting demonstrated that USP5 regulated EMT via the Wnt/β-catenin signaling pathway. Further immunohistochemical analysis revealed that USP5 was significantly associated with the expression of β-catenin and EMT markers in NSCLC tissues. Overall, USP5 upregulation is associated with tumor metastasis and poor prognosis in patients with NSCLC. USP5 promotes EMT and the invasion and migration of NSCLC cells. Therefore, USP5 may serve as a novel prognostic biomarker and provide a potential target for the treatment of metastasis in NSCLC.Introduction Current drug dosing in preterm infants is standardized, mostly based on bodyweight. Still, covariates such as gestational and postnatal age may importantly alter pharmacokinetics and pharmacodynamics. Evaluation of drug therapy in these patients is very difficult because objective pharmacodynamic parameters are generally lacking. By integrating continuous physiological data with model-based drug exposure and data on adverse drug reactions (ADRs), we aimed to show the potential benefit for optimized individual pharmacotherapy. Materials and methods Continuous data on oxygen saturation (SpO2), fraction of inspired oxygen (FiO2) and composite parameters, including the SpO2/FiO2 ratio and the cumulative oxygen shortage under the 89% SpO2 limit, served as indicators for doxapram effectiveness. We analyzed these continuous effect data, integrated with doxapram exposure and ADR parameters, obtained in preterm infants around the start of doxapram therapy. The exposures to doxapram and the active metabolitly improve therapy. The variability between and within patients emphasizes the importance of individual, objective evaluation of pharmacotherapy. These measurements, together with data on ADRs, allow for precision medicine in neonatology that should be brought to the bedside.During hospital stay, about 20% of adult patients experience an episode of acute kidney injury (AKI), which is characterized by a rapid decrease in kidney function. Diagnostic tools regarding early diagnosis of kidney dysfunction prior to AKI and markers of renal recovery are not available. Additionally, there is no therapeutic option for the treatment of AKI. Thus, better and more specific diagnostic and therapeutic options are urgently needed in daily clinical practice. NoncodingRNAs (ncRNAs) have come into focus of research in the context of AKI in the last decade. https://www.selleckchem.com/products/Bortezomib.html The best characterized group of ncRNAs are microRNAs (miRNAs). An increasing body of literature has shown that miRNAs are involved in the pathogenesis of AKI and that they are promising future tools in the diagnosis and therapy of AKI. However, there are obstacles to be overcome before miRNAs can be transferred to patient care. This review will give an overview of our current knowledge of miRNA involvement in the context of AKI while critically evaluating their diagnostic and therapeutic potential.