https://www.selleckchem.com/products/sodium-dichloroacetate-dca.html 18-5.78 m/s and 2.15-6.18 m/s, respectively. Based on the terminal velocity of the grains and volumetric air flow rate of the blower, fluidization chamber diameter was arrived. Chamber diameter of 0.15 m was found to be sufficient to generate required air velocity of 6.89 m/s which met the fluidization and carry over velocities of popped/puffed grains. The designed fluidization chamber was analyzed for heat and mass transfer during popping/puffing. Convective heat and mass transfer coefficients were estimated to be in the range of 103-187 W/m2 °C and 0.124-0.162 m/s, respectively. Theoretical values for total heat and mass transfer were similar to the experimental values.The consumption of food with health benefits is growing today worldwide. This study was designed in order to incorporate papaya dietary fibre concentrates (DFCs) from peel and pulp dehydrated with the use of microwave (MW), or convection with hot air (CV) in oil-in- water emulsions. Results of studies indicated that Pulp DFC produced more stability to creaming (18 weeks) than Peel DFC (6 weeks). It was found that peel DFCs exerted up to 30% reduction in lipid peroxidation in comparison to the reference system during storage. Rheological analysis showed a similar behaviour when emulsions were mixed with pulp DFCs either dehydrated by MW or CV, while the dressing with peel DFCs had a much lower consistency than the former. The analysis of the emulsions micro-structure showed a polydisperse system of oil droplets and fiber structures trapping oil. Finally, emulsions with pulp DFCs showed a better consumer´s acceptance. These results also suggested that the use of DFCs may have high industrial potential in contributing to dietary fibre enrichment through technological intervention of emulsion formulation by papaya pulp and peel, increasing antioxidant property, consistency and stability during storage.In this study, a laser node with p