https://www.selleckchem.com/products/LBH-589.html Complex organosulfur molecules are ubiquitous in interstellar molecular clouds, but their fundamental formation mechanisms have remained largely elusive. These processes are of critical importance in initiating a series of elementary chemical reactions, leading eventually to organosulfur molecules-among them potential precursors to iron-sulfide grains and to astrobiologically important molecules, such as the amino acid cysteine. Here, we reveal through laboratory experiments, electronic-structure theory, quasi-classical trajectory studies, and astrochemical modeling that the organosulfur chemistry can be initiated in star-forming regions via the elementary gas-phase reaction of methylidyne radicals with hydrogen sulfide, leading to thioformaldehyde (H2CS) and its thiohydroxycarbene isomer (HCSH). The facile route to two of the simplest organosulfur molecules via a single-collision event affords persuasive evidence for a likely source of organosulfur molecules in star-forming regions. These fundamental reaction mechanisms are valuable to facilitate an understanding of the origin and evolution of the molecular universe and, in particular, of sulfur in our Galaxy.Lymphocyte-based immunotherapy has emerged as a breakthrough in cancer therapy for both hematologic and solid malignancies. In a subpopulation of cancer patients, this powerful therapeutic modality converts malignancy to clinically manageable disease. However, the T cell- and chimeric antigen receptor T (CAR-T) cell-mediated antimetastatic activity, especially their impacts on microscopic metastatic lesions, has not yet been investigated. Here we report a living zebrafish model that allows us to visualize the metastatic cancer cell killing effect by tumor- infiltrating lymphocytes (TILs) and CAR-T cells in vivo at the single-cell level. In a freshly isolated primary human melanoma, specific TILs effectively eliminated metastatic cancer cells in the living body.