https://www.selleckchem.com/products/ms-275.html The residual biomass from phycobiliproteins extraction was then used to produce biogas, with final methane yields ranging from 159 to 199 mL CH4/g VS. According to the results, by combining the extraction of pigments and the production of biogas from residual biomass, we would not only obtain high-value compounds, but also more energy (around 5-10% higher), as compared to the single recovery of biogas. The proposed process poses an example of resource recovery from biomass grown in wastewater, moving toward a circular bioeconomy.In the quest for environmentally friendly and safe batteries, moving from fluorinated electrolytes that are toxic and release corrosive compounds, such as HF, is a necessary step. Here, the effects of electrolyte fluorination are investigated for full cells combining silicon-graphite composite electrodes with LiNi1/3Mn1/3Co1/3O2 (NMC111) cathodes, a viable cell chemistry for a range of potential battery applications, by means of electrochemical testing and postmortem surface analysis. A fluorine-free electrolyte based on lithium bis(oxalato)borate (LiBOB) and vinylene carbonate (VC) is able to provide higher discharge capacity (147 mAh gNMC-1) and longer cycle life at C/10 (84.4% capacity retention after 200 cycles) than a cell with a highly fluorinated electrolyte containing LiPF6, fluoroethylene carbonate (FEC) and VC. The cell with the fluorine-free electrolyte is able to form a stable solid electrolyte interphase (SEI) layer, has low overpotential, and shows a slow increase in cell resistance that leads to improved electrochemical performance. Although the power capability is limiting the performance of the fluorine-free electrolyte due to higher interfacial resistance, it is still able to provide long cycle life at C/2 and outperforms the highly fluorinated electrolyte at 40 °C. X-ray photoelectron spectroscopy (XPS) results showed a F-rich SEI with the highly fluorinated electrolyte, whi