p-AKT and p-ERK was increased in asthmatic mice and decreased in mice with TiO2 treatment. p-AKT and p-ERK was decreased in NHBE cells treated with TiO2 and HDM extracts. Trans-epithelial electrical resistance (TEER) was higher in NHBE cells treated with TiO2 or HDM extracts; however, this was decreased by concurrent TiO2 and HDM extracts treatment. Our data suggest that particulate matter contributes to airway epithelial barrier dysfunction and results in airway inflammation and responsiveness.Hydrogels are widely used in the biomedical field, due to their high similarity to native extracellular matrix (ECM). Most responsive hydrogels could only passively receive stimuli and independently change their properties. In this study, a photosensitive o-nitrobenzyl (NB) ester linker of polyethylene glycol (PEG) with maleimido (Mal) as terminal groups (PEG-NB-Mal) and a 5-methylfurfuryl (mF) grafted carboxymethyl chitosan (CMCS) derivative (CMCS-mF) were synthesized and used to prepare functional hydrogels via Diels-Alder (DA) reactions. The hydrogel exhibited programmable degradation properties after sequential exposure to UV light and acid treatments. It can maintain high integrity upon the single stimuli, the cascade acid and UV light treatments or the cascade UV light and alkaline treatments. Moreover, the hydrogel exhibited well controlled release profile of rhodamine B (RB). In summary, such CMCS-based hydrogels show great potential in biomedical applications. In addition, the usage of photo-induced cascade reaction in sequential degradation hydrogels can be extended to design other types of programmable smart materials.This study emphasized on structural alteration of rice starch-unsaturated fatty acid complexes by adding trans-2-dodecaenoic acid (t12), trans-oleic acid (t18), cis-oleic acid (c18) and linoleic acid (loa) with different concentration under high-pressure homogenization treatment, and further illustrated the underlying mechanism of modulating digestibility. Results showed that the complex primarily presented as V6 or type IIa polymorph; complex index, content of ordered structure and thermal stability appeared to be positively correlated to the concentration of unsaturated fatty acids. t12 was too mobile to form single helix, leading to the formation of loose matrix; t18 fitted better within the cavity of starch than c18, and formed structural domain with higher compactness and thermal stability; Rloa had lower complex index but higher degree of short-range order, and tended to form alternating amorphous and crystalline structure. The digestibility was higher in the order of Rloa, Rt18, Rc18 and Rt12.Organic matter pollution and heavy metal pollution have become one of the main problems in water recycling, and the strategy to simultaneously remove soluble organic matter and metal ions is crucial for sewage treatment. In this study, multilayer calcium Alginate beads (n-Alg-DBs-Bas) containing Diatom Biosilica (DBs) and Bacillus subtilis (Bas) were designed as microecologics for sewage treatment. The introduction of DBs in beads and the multilayer structure could promote Bas growth, prolong the stability of the beads, and enhance the adsorption of beads, further improve the sewage treatment efficiency. The organic matter degradation of 3 layered Alg-DBs-Bas reached to 68.23 ± 0.95 % of COD and 58.88 ± 0.84 % of NH4+-N, and the metal ion adsorption was up to 119.31 mg/g for Fe3+, 110.81 mg/g for Zn2+ and 141.34 mg/g for Cu2+. The prepared multilayer calcium alginate beads combined organic matter degradation and metal ions absorption, which is significant for environmental applications.The asymmetric wetting membranes have attracted intense attention in liquid directional transportation. However, it is a huge challenge to prepare surface layer membrane for sanitary products with antibacterial and asymmetric wettability by a simple method. Herein, the bacterial cellulose grafted with chitosan (BC-CS) was used as the hydrophilic agent to modify polypropylene nonwoven fabric (PPF) substrate via easy and effective one-sided layer-by-layer spraying to prepare the asymmetric wetting and antibacterial composite membrane (BC-CS/PPF). It showed that the BC-CS/PPF had good physical properties, which was attributed to the strong and uniform physical combination between nano-sized BC-CS and PPF. https://www.selleckchem.com/products/salubrinal.html The sanitary products with BC-CS/PPF surface layer, denoted as BC-CS/PPF sanitary products, also had good absorption and anti-return property. The antibacterial test revealed that BC-CS had an excellent performance against S. aureus and E. coli in the simulated application environment. Moreover, the antibacterial performance was better than that of commercial sanitary products.Galactomannans (GM), such as guar gum (GG) and locust bean gum (LBG), are extensively used as a thickening agent in the food industry. In this work, the physical, rheological, and structural properties of GG and LBG agglomerated via a fluidized bed agglomerator with different concentrations of maltodextrin (MD) binder were investigated. Agglomerated GM at 40 % MD showed lower Carr index and Hausner ratio, indicating better flowability and lower cohesiveness. The GG showed larger particle sizes than LBG, which was confirmed via SEM images and size distribution profiles. The GM with MD exhibited improved rheological properties. The GG showed lower tan δ values than LBG, indicating the enhancement of their elastic properties. Results exhibit that the physical, rheological, and structural properties of GM can be greatly affected by their agglomerate growths during fluidized bed agglomeration of particles with varying concentrations of MD binder as well as the type of gum.Most structural self-healing materials were developed based on either reversible supramolecular interaction or dynamic covalent bonding. It seems a good idea to incorporate self-healing properties into high-performance materials. In this study, we fabricated the alginate-based cyclodextrin and polyacrylamide azobenzene highly stretchable and tough interpenetrating composite hydrogel with self-repairing behavior under light irradiation. Initially, the alginate-based cyclodextrin and polyacrylamide azobenzene were designed and synthesized. The corresponding structural, thermal, and morphological properties of hydrogels were characterized. The reversible transformation of the sol-gel can be achieved by the irradiation upon ultraviolet light and visible light. The self-healing behavior of this composited gel is based on the host-guest interaction between cyclodextrin and azobenzene. The recovery gel elongation at 48 h healing in the dark condition was is 0.04 MPa, with an elongation of 1140 %. Therefore, this gel can achieve self-healing ability while maintaining highly stretchable and tough performance.