The condition of some patients with COVID-19 progress rapidly and require aggressive treatments and intensive care, such as endotracheal intubation.•Emergency endotracheal intubation in critically ill patients with COVID-19 has posed a huge challenge to the self-protection of anesthesiologists.•Anesthesiologists from the frontline of Wuhan, China brought first-hand experience about emergency endotracheal intubation in critically ill patients with COVID-19 to colleagues.The palliative treatment options for advanced hepatocellular carcinoma (HCC) are currently not satisfying. The use of photodynamic therapy (PDT) has gained much attention in the treatment of several cancers and has been approved as an alternative approach in treating different forms of cancers. We investigated for the first time the PDT effects of tetra-triethyleneoxysulfonyl zinc phthalocyanine (ZnPc) on HCC cells. Photoactivation of ZnPc loaded HCC cells resulted in a dose- and time- dependent growth inhibitory effect, the production of reactive oxygen species (ROS), induced cytotoxic effects and the induction of apoptosis in the investigated HCC cells (HepG2 and Huh-7). ZnPc-PDT inhibited the proliferation of HCC cells by up to 90% accompanied by a down-regulation of the activity and expression of the proliferation relevant mitogen-activated protein kinase (MAPK)-protein extracellular signal-regulated (ERK ½). Moreover, an up-regulation of proapoptotic BAX and a down-regulation of antiapoptotic B-cell lymphoma 2 (Bcl-2) expressions were observed with both proteins implicated in mitochondria-driven apoptosis. The investigation of the anti-tumor effect of ZnPc-PDT in vivo using the chicken chorioallantoic membrane assays (CAM) revealed a strong reduction in the size of HCC tumor plagues >80% after 4 days of PDT-treatment without affecting the survival of the developing embryo. The pronounced anti-proliferative and anti-tumor effects of ZnPc-PDT both in vitro and in vivo render ZnPc-PDT as a promising palliative treatment option for hepatocellular carcinoma.Breast cancer is one of the leading causes of mortality in women, worldwide. The average survival rate of patients suffering from advanced breast cancer is about 27% for five years. Photothermal therapy employing biodegradable nanoparticle are extensively researched for enhanced anticancer therapy in breast cancer treatment. In the current study, we report a chitosan based mucoadherant and biodegradable niosome nanoparticle entrapping near infrared (NIR) dye (IR 806) for the treatment of breast cancer. Niosome entrapping IR 806 (NioIR) showed encapsulation efficacy of about 56 ± 2%. The prepared nanoparticles (NioIR) were further coated with chitosan (NioIR-C) to impart mucoadhesive property to the nanosystem. NioIR-C showed minimal degradation following NIR laser irradiation, thus enhancing its photothermal stability. They also exhibited efficient photothermal transduction, when compared with IR 806 dye. NioIR-C were biocompatible when treated with normal cell lines (NIH 3T3 and L929) and showed cytotoxicity towards breast cancer cell lines (MCF-7 and MDA-MB 231). When triggered with NIR laser, NioIR-C showed photothermal cell death (approximately 93%). The presence of chitosan coating on NioIR led to mucoadherence potential that further enhances the therapeutic effect on breast cancer cells when compared with IR 806 dye and NioIR. Thus NioIR-C can be a promising nanosystem for effective treatment of breast cancer using photothermal therapy.Photobiomodulation (PBM) with low-intensity red to near infrared light elicits neuroprotection in various pre-clinical models and in some clinical contexts, yet the intracellular mechanisms triggered by PBM, and their temporal sequence of modulation, remain unclear. We aimed to address this uncertainty by mapping the temporal transcriptomic response to PBM. Human SH-SY5Y neuroblastoma cells were treated with 670 nm PBM and RNA collected a various time points over 24 h. The transcriptome was screened by RNA microarray, and gene co-expression analysis by hierarchical clustering was coupled with bioinformatics analysis to reveal the molecular systems modulated by PBM and their expression patterns over the time course. The findings suggest that PBM induces distinct early phase (up to 8 h post-PBM) and late phase (24 h post-PBM) intracellular responses. The early intracellular response features enrichment of pathways relating to transcriptional regulation and cellular stress responses, while the late intracellular response demonstrates a physiological shift to enrichment of downstream pathways such as cell death and DNA damage. These findings provide support for the hypothesis that PBM acts as a transient stressful stimulus, activating endogenous stress response pathways that in turn enhance cellular resilience. Further, the study introduces a novel method for retaining the richness of the temporal component when analysing transcriptomic time course data sets.Medroxyprogesterone acetate (MPA) injectable products are a key commodity for reproductive health and are available in the global market from a variety of manufacturing sources. Depending on the climatic zone conditions of the destination country for product use, MPA injectables are at risk of exposure to adverse transport and storage conditions. Analytical methods are available that quantify impurity levels in MPA and MPA injectable products, but minimal information is publicly available on the source of impurity and degradation product generation or the safety risk of these compounds. Forced degradation studies were conducted on MPA and MPA injectables to gain a better understanding of potential sources of impurities and degradation products. Furthermore, QSAR analysis was conducted to assess the toxicity risk of known impurities. https://www.selleckchem.com/products/Cyclopamine.html More impurities were generated under acidic, basic, light, and oxidative forced degradation conditions relative to thermal degradation, however thermal exposure is the most likely adverse condition to be experienced by these products. Even if impurities are present in MPA injectables, QSAR analysis found that known impurities for MPA are apparently no more of a safety risk than MPA.