https://www.selleckchem.com/products/art558.html populations. We infer that an early disjunction to develop in the species distribution was that across the Lower Murray Basin, an important biogeographical barrier separating many dry sclerophyll plant taxa in southeastern Australia. Additionally, our results suggest that the western populations fragmented earlier than the eastern ones. Fragmentation, both west and east of the Murray Basin, is likely tied to climatic changes associated with glacial-interglacial cycles although it remains possible that major geological events including uplift of the Mount Lofty Ranges and basalt flows in the Newer Volcanics Province also played a role.Deschampsia antarctica Desv. can be found in diverse Antarctic habitats which may vary considerably in terms of environmental conditions and soil properties. As a result, the species is characterized by wide ecotypic variation in terms of both morphological and anatomical traits. The species is a unique example of an organism that can successfully colonize inhospitable regions due to its phenomenal ability to adapt to both the local mosaic of microhabitats and to general climatic fluctuations. For this reason, D. antarctica has been widely investigated in studies analyzing morphophysiological and biochemical responses to various abiotic stresses (frost, drought, salinity, increased UV radiation). However, there is little evidence to indicate whether the observed polymorphism is accompanied by the corresponding genetic variation. In the present study, retrotransposon-based iPBS markers were used to trace the genetic variation of D. antarctica collected in nine sites of the Arctowski oasis on King George Island (Western Antarctic). The genotyping of 165 individuals from nine populations with seven iPBS primers revealed 125 amplification products, 15 of which (12%) were polymorphic, with an average of 5.6% polymorphic fragments per population. Only one of the polymorphic fragments, observed