https://www.selleckchem.com/products/poly-d-lysine-hydrobromide.html In this paper, we developed a novel resistant equation of pest to pesticide with external~induced resistance and genetic resistance, and then the analytical formula of this equation under different level of dominance of resistance allele is given. Further, we proposed the new methods of modelling pest populations with discrete generations and impulsive chemical control and developed a multi-scale system combining descriptions of pest populations and their genetic evolution. The threshold condition~of pest eradication solution was investigated in more detail, which allows us to address the optimal time when different types of pesticides should be switched. Moreover, we also provided a pesticide switching method guided by the economic injury level (EIL), and then some biological implications have been discussed in terms of pest control.It is widely believed that tertiary protein-ligand interactions are essential in determining protein function. Currently, the structure sampling and scoring function in traditional docking methods still have limitations. Therefore, new methods for protein-ligand docking are desirable. The accurate docking can speed up the early-stage development of new drugs. Here we present a multi-source information-based protein-ligand docking approach (pmDock). In the CDK4/6 inhibitor case study, pmDock produces a substantial accuracy increases between the predicted geometry centers of ligands and experiments compared to AutoDock and SwissDock alone. Also, pmDock improves predictions for critical binding sites and captures more tertiary binding interactions. Our results demonstrate that pmDock is a reliable docking method for accurate protein-ligand prediction.Stricter requirements to environmental compatibility and smaller energy-output ratio highlight the importance of implementing the super high-frequency drying of the crop seeds. The study is aimed at the development of drying