https://www.selleckchem.com/products/unc8153.html CoVs contribute to facile zoonotic transmission and intercellular spread within infected organisms. Copyright © 2020 Qing et al.Toxoplasma gondii's single mitochondrion is very dynamic and undergoes morphological changes throughout the parasite's life cycle. During parasite division, the mitochondrion elongates, enters the daughter cells just prior to cytokinesis, and undergoes fission. Extensive morphological changes also occur as the parasite transitions from the intracellular environment to the extracellular environment. We show that treatment with the ionophore monensin causes reversible constriction of the mitochondrial outer membrane and that this effect depends on the function of the fission-related protein Fis1. We also observed that mislocalization of the endogenous Fis1 causes a dominant-negative effect that affects the morphology of the mitochondrion. As this suggests that Fis1 interacts with proteins critical for maintenance of mitochondrial structure, we performed various protein interaction trap screens. In this manner, we identified a novel outer mitochondrial membrane protein, LMF1, which is essential for positioning o The single mitochondrion of this parasite is a validated drug target, and it changes its shape throughout its life cycle. When the parasite is inside a cell, the mitochondrion adopts a lasso shape that lies in close proximity to the pellicle. The functional significance of this morphology is not understood and the proteins involved are currently not known. We have identified a protein that is required for proper mitochondrial positioning at the periphery and that likely plays a role in tethering this organelle. Loss of this protein results in dramatic changes to the mitochondrial morphology and significant parasite division and propagation defects. Our results give important insight into the molecular mechanisms regulating mitochondrial morphology. Copyright © 2020 Jacobs et al.Venezuel