For this purpose, a finite element simulation was performed to replicate a uniaxial tensile test on a biological soft tissue sample. The influence of different pre-stretches on the mechanical parameters of a second order Yeoh model was investigated. The Yeoh mechanical parameters, or any other strain energy density, depend strongly on any pre- and post-processing choices they adapt to compensate the error made when choosing an arbitrary level of prestretch or prestress. This observation spreads to any modeling approach used in soft tissues. Mechanical parameters are indeed naturally bound to the choice of the pre-stretch (or pre-stress) through the elongation and the constitutive law. Regardless of the model, it would therefore be pointless to compare mechanical parameters if the conditions for the processing of experimental raw data are not fully documented.The aim of the presented study was to estimate the material properties of human patellar ligaments from the elderly population by means of tensile tests. The experimental part was conducted on a custom tensile-testing device, with a built-in enclosure to simulate in-vivo conditions, using 25 (15 female, 10 male) bone-ligament-bone samples from elderly (age 83 (8)) human donors. During the tensile tests, the resultant force and displacement of the sample attachments were recorded. With this data and the values of the initial length and the initial cross-sectional area of the samples, the engineering stress and strain, the Young's modulus and the toughness at rupture were calculated for each sample. The results were then averaged and presented for all the samples together and for the female and male populations separately. The measured Young's modulus and the failure stress values were found to be significantly higher for the female samples compared to the male (p less then 0.05). https://www.selleckchem.com/products/fluoxetine.html All the other measured properties did not show a significant difference. The toe region's material properties for the patellar ligament were also presented as valuable information for the anterior cruciate ligament reconstruction. The tensile-test results were compared to other research carried on human patellar ligaments using samples from younger donors. The comparison showed that the samples from the elderly population exhibit lower values of strain at the end of the toe region and have a lower failure strain for the patellar ligament. The Young's modulus and the failure stress of the samples in this study were in the range of other research conducted on patellar ligaments.Finite element modeling is often used in biomechanical engineering to evaluate medical devices, treatments and diagnostic tools. Using an adequate material model that describes the mechanical behavior of biological tissues is essential for a reliable outcome of the simulation. Pre-programmed material models for biological tissues are available in many finite element software packages. However, since these pre-programmed models are presented to the user as a black box, without the possibility to modify the material description, many researchers turn to implementing their own material formulations. This is a complex undertaking, requiring extensive knowledge while documentation is limited. This paper provides a detailed description, at the level of the biomedical engineer, of the implementation of a nonlinear hyperelastic material model using user subroutines in Abaqus®, in casuUANISOHYPER_INV and UMAT. The Gasser-Ogden-Holzapfel material model is used as an example, resulting in four implementation variations oint for biomechanical engineers to implement their own material models at different levels of complexity.Cardiac inflammation in Coxsackievirus B3 (CVB3)-induced myocarditis is a consequence of viral-related cardiac injury and immune response. Caspase-associated recruitment domain 9 (CARD9) is a critical adaptor protein involved in transduction of signals from various innate pattern recognition receptors. In this study, the role of CARD9 in acute viral myocarditis was evaluated. CARD9-/- and C57BL/6 mice were infected with CVB3. On day 7 postinfection, myocardial tissue and blood samples were collected and examined. After CARD9 knockout, mRNA and protein levels of transforming growth factor-β(TGF-β), interleukin-17A(IL-17A), and CARD domain of B-cell CLL/lymphoma 10(BCL-10) in the myocardium were markedly lower in CARD9-/- mice than in C57BL/6 mice with CVB3-induced viral myocarditis. This trend was similar for the pathological scores for inflammation and serum levels of cytokines interleukin-6(IL-6), interleukin-10(IL-10), interferon -γ(IFN-γ), TGF-β, and IL-17A. These results suggest that the CARD9-mediated secretion of pro-inflammatory cytokines plays an important role in the immune response to acute viral myocarditis.Pulsatile gonadotropin-releasing hormone (GnRH) secretion is essential for regulating reproductive functions in mammals. GnRH pulses are governed by a neural mechanism that is termed the GnRH pulse generator. In the present study, we investigated the role of central calcitonin receptor (CTR) signaling in the regulation of the GnRH pulse generator activity in ovariectomized goats by administering amylin, an endogenous ligand for CTR, into the lateral ventricle. GnRH pulse generator activity was measured using multiple unit activity (MUA) recordings in the mediobasal hypothalamus. We analyzed changes in the interval of characteristic increases in MUA (MUA volleys). The MUA volley interval shortened immediately after amylin administration, followed by prolonged intervals. Double in situ hybridization for KISS1 (kisspeptin gene) and CALCR (CTR gene) revealed that low expression levels of CALCR were found in the arcuate kisspeptin neurons, which is suggested as the main population of neurons, involved in GnRH pulse generator activity. These results suggest that central amylin-CTR signaling has a biphasic role in the regulation of GnRH pulse generator activity by acting on cells other than the arcuate kisspeptin neurons in goats.Organophosphate esters (OPEs) are applied as both flame retardants and plasticizers to a variety of consumer items such as home furnishings, construction materials, and children's products. While some assessments have characterized exposure among toddlers and young children, little is known about the OPE exposure among infants, who are a vulnerable population due to their rapid development. Here, we collected spot urine samples from 6-week-old (n = 100) and 12-month-old infants (n = 63), with about half of the infants evaluated at both ages (n = 52), to characterize OPE exposure and determine what factors contributed to higher exposures. Five of six OPE metabolites analyzed were detected frequently (>70%). Diphenyl phosphate was detected in every urine sample, while bis(2-chloro-isopropyl) phosphate (BCIPP) was the most abundant metabolite measured overall. Concentrations of bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP) and BCIPP [i.e., metabolites of tris(2-chloro-isopropyl) phosphate (TCIPP)] were significantly greater among 6-week-old infants compared to 12-month-olds, while levels of other OPE metabolites were not statistically different in the first year of life.