https://www.selleckchem.com/products/Daidzein.html tober 2015.Precise quantification of molecular targets in a biological sample across a wide dynamic range is a key requirement in many diagnostic procedures, such as monitoring response to therapy or detection of measurable residual disease. State of the art digital PCR assays provide for a dynamic range of four orders of magnitude. However digital assays are complex and require sophisticated microfluidic tools. Here we present an assay format that enables ultra-precise quantification of RNA targets in a single measurement across a dynamic range of more than six orders of magnitude. The approach is based on hydrogel beads that provide for microfluidic free compartmentalization of the sample as they are used as nanoreactors for reverse transcription, PCR amplification and combined real time and digital detection of gene transcripts. We have applied these nanoreactor beads for establishing an assay for the detection and quantification of BCR-ABL1 fusion transcripts. The assay has been characterized for its precision and linear dynamic range. A comparison of the new method against conventional real time RT-PCR analysis (reference method) with clinical samples from patients with chronic myeloid leukemia (CML) revealed excellent concordance with Pearsons correlation coefficient of 0.983 and slope of 1.08.This study uses mobility statistics combined with business census data for the eight Japanese prefectures with the highest coronavirus disease-2019 (COVID-19) infection rates to study the effect of mobility reductions on the effective reproduction number (i.e., the average number of secondary cases caused by one infected person). Mobility statistics are a relatively new data source created by compiling smartphone location data; they can be effectively used for understanding pandemics if integrated with epidemiological findings and other economic data sets. Based on data for the first wave of infections in Japan, we found