Gangliosides are glycosphingolipids that contain one or more sialic acid residues. They are found on all vertebrate cells and tissues but are especially abundant in the brain. Expressed primarily on the outer leaflet of the plasma membranes of cells, they modulate the activities of cell surface proteins via lateral association, act as receptors in cell-cell interactions and are targets for pathogens and toxins. Genetic dysregulation of ganglioside biosynthesis in humans results in severe congenital nervous system disorders. Because of their amphipathic nature, extraction, purification, and analysis of gangliosides require techniques that have been optimized by many investigators in the 80 years since their discovery. Here, we describe bench-level methods for the extraction, purification, and preliminary qualitative and quantitative analyses of major gangliosides from tissues and cells that can be completed in a few hours. We also describe methods for larger scale isolation and purification of major ganglioside species from brain. Together, these methods provide analytical and preparative scale access to this class of bioactive molecules.Radiation dosimetry is critical in the accurate delivery and reproducibility of radiation schemes in preclinical models for high translational relevance. Prior to performing any in vitro or in vivo experiments, the specific dose output for the irradiator and individual experimental designs must be assessed. Using an ionization chamber, electrometer, and solid water setup, the dose output of wide fields at isocenter can be determined. Using a similar setup with radiochromic films in the place of the ionization chamber, dose rates for smaller fields at different depths can also be determined. In vitro clonogenic survival assays of cancer cells in response to radiation treatment are inexpensive experiments that provide a measure of inherent radio-sensitivity of cell lines by fitting these data with the traditional linear-quadratic model. https://www.selleckchem.com/products/l-arginine-l-glutamate.html Model parameters estimated from these assays, combined with the principles of biologic effective doses, allows one to develop varying fractionation schedules for radiation treatment that provide equivalent effective doses in tumor-bearing animal experiments. This is an important factor to consider and correct for in comparing in vivo radiation therapy schedules to eliminate potential confounding of results due to variance in the delivered effective doses. Taken together, this article provides a general method for dose output verification preclinical animal and cabinet irradiators, in vitro assessment of radio-sensitivity, and verification of radiation delivery in small living organisms.Pretreatment is still the most expensive step in lignocellulosic biorefinery processes. It must be made cost-effective by minimizing chemical requirements as well as power and heat consumption and by using environment-friendly solvents. Deep eutectic solvents (DESs) are key, green, and low-cost solvents in sustainable biorefineries. They are transparent mixtures characterized by low freezing points resulting from at least one hydrogen bond donor and one hydrogen bond acceptor. Although DESs are promising solvents, it is necessary to combine them with an economic heating technology, such as microwave irradiation, for competitive profitability. Microwave irradiation is a promising strategy to shorten the heating time and boost fractionation because it can rapidly attain the appropriate temperature. The aim of this study was to develop a one-step, rapid method for biomass fractionation and lignin extraction using a low-cost and biodegradable solvent. In this study, a microwave-assisted DES pretreatment was condu for lignocellulosic biomass fractionation.The control of such human diseases as dengue, Zika, and chikungunya relies on the control of their vector, the Aedes aegypti mosquito, because there is no prevention. Control of mosquito vectors can rely on chemicals applied to the immature and adult stages, which can contribute to the mortality of non-targets and more importantly, lead to insecticide resistance in the vector. The sterile insect technique (SIT) is a method of controlling populations of pests through the release of sterilized adult males that mate with wild females to produce non-viable offspring. This paper describes the process of producing sterile males for use in an operational SIT program for the control of Aedes aegypti mosquitoes. Outlined here are the steps used in the program including rearing and maintaining a colony, separating male and female pupae, irradiating and marking adult males, and shipping Aedes aegypti males to the release site. Also discussed are procedural caveats, program limitations, and future objectives.Ecological physiology, particularly of ectotherms, is increasingly important in this changing world as it uses measures of species and environmental traits to explore the interactions between organisms and their surroundings to better understand their survival and fitness. Traditional thermal assays are costly in terms of time, money, and equipment and are therefore often limited to small sample sizes and few species. Presented here is a novel protocol that generates detailed data on individual behavior and physiology of large, volant, terrestrial insects, using the example of butterflies. This paper describes the methods of a cold shock recovery assay that can be performed in the field under ambient environmental conditions and does not require costly laboratory equipment. This method has been used to understand the response and recovery strategy to cold shock of tropical butterflies, generating individual level data across entire butterfly communities. These methods can be employed in both remote field settings and classrooms and can be used to generate ecologically relevant physiological data and as a teaching tool.Makerspaces have a high potential of enabling researchers to develop new techniques and to work with novel species in ecological research. This protocol demonstrates how to take advantage of the technology found in makerspaces in order to build a more versatile flight mill for a relatively low cost. Given that this study extracted its prototype from flight mills built in the last decade, this protocol focuses more on outlining divergences made from the simple, modern flight mill. Previous studies have already shown how advantageous flight mills are to measuring flight parameters such as speed, distance, or periodicity. Such mills have allowed researchers to associate these parameters with morphological, physiological, or genetic factors. In addition to these advantages, this study discusses the benefits of using the technology in makerspaces, like 3D printers and laser cutters, in order to build a more flexible, sturdy, and collapsible flight mill design. Most notably, the 3D printed components of this design allow the user to test insects of various sizes by making the heights of the mill arm and infrared (IR) sensors adjustable.