https://www.selleckchem.com/products/bp-1-102.html The double-well model is usually used to describe the conformational transition between two states of a protein. Since conformational changes usually occur within a relatively large time scale, coarse-grained models are often used to accelerate the dynamic process due to their inexpensive computational cost. In this work, we develop a double-well ultra-coarse-grained (DW-UCG) model to describe the conformational transitions of the adenylate kinase, glutamine-binding protein, and lactoferrin. The coarse-grained simulation results show that the DW-UCG model of adenylate kinase captures the crucial intermediate states in the LID-closing and NMP-closing pathways, reflecting the key secondary structural changes in the conformational transition. A comparison of the different DW-UCG models of adenylate kinase indicates that an appropriate choice of bead resolution could generate the free energy landscape that is comparable to that from the residue-based model. The coarse-grained simulations for the glutamine-binding protein and lactoferrin also demonstrate that the DW-UCG model is valid in reproducing the correct two-state behavior for their functional study, which indicates the potential application of the DW-UCG model in investigating the mechanism of conformational changes of large proteins.An approach to solve the emerging need of prediction of the toxicity of mixtures of engineered nanoparticles (ENPs) is presented. The integration of classic approaches to mixture toxicity assessment and computational toxicology approaches is proposed to be a smart strategy for forecasting the toxicity of a mixture of ENPs.In this paper, a novel and facile synthetic method of 3-mercaptopropionic acid functionalized copper nanoclusters with aggregation-induced emission (AIE) induced by Cu2+ (Cu2+@MPA-Cu NCs) was developed by a one-pot reaction as a fluorescent probe for the detection of sulfide ion (S2-). The prepared Cu2+@MPA-Cu NCs b