https://www.selleckchem.com/products/gmx1778-chs828.html Chitosan can function a key role in plant resistant against Botrytis cinerea infection, while its mechanism is unclear in ripened fruits. In this study, we investigated the chitosan effect on two type of ripened fruits including strawberry and grapes (Kyoho and Shine-Muscat) when were infected with B. cinerea. Results showed that chitosan inhibited B. cinerea growth, increased phenolic compounds and cell wall composition, modulated oxidative stress and induced jasmonic acid (JA) production in ripened fruits. Data-independent acquisition (DIA) showed that 224 and 171 proteins were upregulated 1.5-fold by chitosan in Kyoho and Shine-Muscat grape, respectively. Topless-related protein 3 (TPR3) were identified and interacted with histone deacetylase 19 (HDAC19) and negatively regulated by JA and chitosan. Meanwhile, overexpression of VvTPR3 and VvHDAC19 reduced the stability of cell wall against B. cinerea in strawberry. Taken together, chitosan induces defense related genes and protect the fruit quality against Botrytis infection through JA signaling.Apis cerana honey collected from the Qinling Mountains in China has been widely used for its antimicrobial property in traditional Chinese medicine. However, its antibacterial mechanism against Salmonella Typhimurium LT2 is still uncertain. A total of 52 volatile components were identified using headspace-gas-chromatography-ion-mobility, and Qinling A. cerana honey exhibited more abundant aromas than monofloral honeys. The phenolic extracts of honey sample F exhibited the lowest minimum inhibitory concentration (5 mg/mL), and chlorogenic acid exhibited the highest (155.91 ± 0.79 mg/kg), followed by caffeic acid, and rutin. After being treated with the extract, cell membranes of S. Typhimurium LT2 significantly shrunk and further collapsed. The extract treatment on mice caused a significant decrease in S. Typhimurium LT2, and a dramatic increase in the potential prebi