https://www.selleckchem.com/products/sr-0813.html To investigate the impact of pretreatment and conditioning on shear bond strength (SBS), surface free energy (SFE) and surface roughness (SR) between polyetheretherketone (PEEK) and cold-cured polymethylmethacrylate (PMMA). PEEK substrates (Dentokeep PEEK Disc, nt-trading) were air abraded with Al2O3 particles of different grain sizes applied with varying pressure at 1) 0.2 MPa - 50 µm Al2O3; 2) 0.4 MPa - 50 µm Al2O3; 3) 0.2 MPa - 110 µm Al2O3; 4) 0.4 MPa - 110 µm Al2O3; or 5) without air abrasion (n = 172/group). Surface properties were quantified using SFE and SR (n = 10/group), and scanning electron microscope imaging (n = 2/group). Substrates were conditioned with a) Visio.link (VL, Bredent); b) Scotchbond Universal (SU, 3M Oral Care); c) Bonding Fluid (BF, Schütz Dental); or d) without conditioning (WC; n = 40/subgroup) and bonded to the polymer (Futura Jet, Schütz Dental). SBS and fracture types were determined before and after 10,000 thermal cycles (n = 20/subgroup). Univariate ANOVA, Kruskal-Walmended to increase bonding properties between PEEK and PMMA. Application of adhesives such as VL can enhance SBS further. To evaluate the effect of different etching times of a self-etching ceramic primer on the microshear bond strength (µSBS) and topographic surface pattern of a lithium-disilicate glass-ceramic. Ceramic slices were subjected to an in-lab simulation of CAD/CAM milling and randomly allocated to 10 groups (n = 35) considering two factors "surface treatment" in 5 levels - one control group (5% hydrofluoric acid + silane application [HF5+SIL]), and 4 experimental groups using ceramic etching/primer (Monobond Etch & Prime, E&P) with different passive application times (40 s, 2 min, 5 min, or 10 min); and "aging" factor in 2 levels - short-term (after 24 h), or long-term (storage for 180 days + 12,000 thermal cycles). Composite cement cylinders were built and µSBS tests were run in a universal testing mach