Hence, the nitrate-induced stress response in new anaerobes such as M. multiformis was demonstrated. The response could also be involved in the conservation of menaquinones and the maximization of nitrate reduction.Silicon carbide (SiC) is an important material used in semiconductor industries and nuclear power plants. SiC wafer implanted with H ions can be cleaved inside the damaged layer after annealing, in order to facilitate the transfer of a thin SiC slice to a handling wafer. This process is known as "ion-cut" or "Smart-Cut". It is worth investigating the exfoliation efficiency and residual lattice defects in H-implanted SiC before and after annealing. In the present paper, lattice damage in the 6H-SiC implanted by H2+ to a fluence of 5 × 1016 H2+/cm2 at 450 and 900 °C was investigated by a combination of Raman spectroscopy and transmission electron microscopy. Different levels of damage caused by dynamic annealing were observed by Raman spectroscopy and transmission electron microscopy in the as-implanted sample. Atomic force microscopy and scanning white-light interferometry were used to observe the sample surface morphology. Surface blisters and exfoliations were observed in the sample implanted at 450 °C and then annealed at 1100 °C for 15 min, whereas surface blisters and exfoliation occurred in the sample implanted at 900 °C without further thermal treatment. This finding can be attributed to the increase in the internal pressure of platelets during high temperature implantation. The exfoliation efficiency, location, and roughness after exfoliation were investigated and possible reasons were discussed. This work provides a basis for further understanding and improving the high-efficiency "ion-cut" technology.Long-lasting economic recessions spreading from initial cradle markets worldwide should be a periodic event inherent to capitalism as a prevailing socio-economic model [...].The aim of this clinical study was to investigate the effectiveness and long-term safety of electrochemotherapy as an emerging treatment for HCC in patients not suitable for other treatment options. A prospective phase II clinical study was conducted in patients with primary HCC who were not suitable for other treatment options according to the Barcelona Clinic Liver Cancer classification. A total of 24 patients with 32 tumors were treated by electrochemotherapy. The procedure was effective, feasible, and safe with some procedure-related side effects. The responses of the 32 treated nodules were 84.4% complete response (CR), 12.5% partial response (PR), and 3.1% stable disease (SD). The treatment was equally effective for nodules located centrally and peripherally. Electrochemotherapy provided a durable response with local tumor control over 50 months of observation in 78.0% of nodules. The patient responses were 79.2% CR and 16.6% PR. The median progression-free survival was 12 months (range 2.7-50), and the overall survival over 5 years of observation was 72.0%. This prospective phase II clinical study showed that electrochemotherapy was an effective, feasible, and safe option for treating HCC in patients not suitable for other treatment options.Mechanical barriers prevent the invasion of the surrounding soft tissues within the bone defects. This concept is known as Guided Bone Regeneration (GBR). The knowledge about the local tissue reaction and the time of degradation of absorbable membranes favors the correct clinical indication. This study aimed to evaluate the biocompatibility and biodegradation of a bovine collagen membrane (Lyostypt®, São Gonçalo, Brazil) and compare it to a porcine collagen membrane (Bio-Gide®) implanted in the subcutaneous tissue of mice, following ISO 10993-62016. Thirty Balb-C mice were randomly divided into three experimental groups, LT (Lyostypt®), BG (Bio-Gide®), and Sham (without implantation), and subdivided according to the experimental periods (7, 21, and 63 days). The BG was considered non-irritant at seven days and slight and moderate irritant at 21 and 63 days, respectively. The LT presented a small irritant reaction at seven days, a mild reaction after 21, and a reduction in the inflammatory response at 63 days. The biodegradation of the LT occurred more rapidly compared to the BG after 63 days. This study concluded that both membranes were considered biocompatible since their tissue reactions were compatible with the physiological inflammatory process; however, the Bio-Gide® was less degraded during the experimental periods, favoring the guided bone regeneration process.Humans have shaped carnivore behavior since at least the Middle Paleolithic period, about 42,000 years ago. In more recent times, spotted hyenas (Crocuta crocuta) in Ethiopia have adapted to living in urban areas, while humans have adapted to living with hyenas. Yet, relationships between coexisting humans and carnivores are rarely addressed beyond mitigating conflicts. We provided a case study for how to broadly think about coexistence and how to study it when measuring if humans and carnivores affect one another. We collected data in four Ethiopian cities Mekelle, Harar, Addis Ababa, and Arba Minch. We held focus groups and key informant interviews that incorporated feedback from 163 people, representing a wide array of religious, economic, and educational backgrounds. We also determined how many hyenas resided in these cities, hyena behavioral responses to humans using a flight initiation test, and problem-solving abilities via puzzle box trials. We found that in three of the cities, hyenas and humans coexptions and animal behavior could advance wildlife conservation, especially in urban areas.It has been long recognized that silicon (Si) plays important roles in plant productivity by improving mineral nutrition deficiencies. Despite the fact that Si is considered as 'quasi-essential', the positive effect of Si has mostly been described in resistance to biotic and tolerance to abiotic stresses. During the last decade, much effort has been aimed at linking the positive effects of Si under nutrient deficiency or heavy metal toxicity (HM). These studies highlight the positive effect of Si on biomass production, by maintaining photosynthetic machinery, decreasing transpiration rate and stomatal conductance, and regulating uptake and root to shoot translocation of nutrients as well as reducing oxidative stress. The mechanisms of these inputs and the processes driving the alterations in plant adaptation to nutritional stress are, however, largely unknown. https://www.selleckchem.com/products/PP242.html In this review, we focus on the interaction of Si and macronutrient (MaN) deficiencies or micro-nutrient (MiN) deficiency, summarizing the current knowledge in numerous research fields that can improve our understanding of the mechanisms underpinning this cross-talk.