https://www.selleckchem.com/products/U0126.html Inert metals are of much importance and play a key role in modern industrial manufacturing. The analytical techniques of inert metals remain challenging. In particular, the mass spectrometry of inert metal elements is yet to be further developed, which also limits the contemporary conceptual in situ analysis of inert metals. As the representative element, the mass spectral detection of palladium is critical and of far-reaching significance. Herein, we developed a mass spectrometry method, which can be used for the high-speed and in situ analysis of palladium, and even for other inert metals. Combining the line ion trap mass spectrometer with the versatile ambient ionization source, a novel kilowatt microwave plasma torch (MPT) can be used to obtain the fully characteristic MPT mass spectra of palladium. Detailed multistage tandem mass spectra show that the general form of target ions is [M(O2)x(NO)mNy(NO2)n]- for the negative ion mode and [M(H2O)x(NO2)y(N2)m]+ for the positive ion mode. Moreover, the formatio broad applications of platinum-group elements (PGE) in modern science and industry.Friction is a ubiquitous manifestation of nature, and when it is studied at the nanoscale, complex and interesting effects arise from fundamental physical and chemical surface properties. Surprisingly, and probably due to the complexity of nanofriction studies, this aspect has not been completely discussed in prior studies. To fully consider the physicochemical influence in nanoscale friction, amorphous carbon films with different amounts of hydrogen and fluorine were prepared, chemically characterized, and evaluated via lateral force microscopy. Hydrogen and fluorine were selected because although they exhibit different physicochemical properties, both contribute to frictional force reduction. Indeed, to explain the experimental behavior, it is necessary to propose a new damping constant unifying both polarizability (physical) and