https://www.selleckchem.com/products/adenosine-5-diphosphate-sodium-salt.html Further analysis indicated that stroke patients yielded no significant difference of the FCMC between EEG → EMG and EMG → EEG directions. Our study indicated that alpha and beta bands were essential to concentrating and maintaining the motor capacities, and provided a new insight in understanding the propagation and function in the sensory-motor system.The safety of human-machine systems can be indirectly evaluated based on operator's cognitive load levels at each temporal instant. However, relevant features of cognitive states are hidden behind in multiple sources of cortical neural responses. In this study, we developed a novel neural network ensemble, SE-SDAE, based on stacked denoising autoencoders (SDAEs) which identify different levels of cognitive load by electroencephalography (EEG) signals. To improve the generalization capability of the ensemble framework, a stacking-based approach is adopted to fuse the abstracted EEG features from activations of deep-structured hidden layers. In particular, we also combine multiple K-nearest neighbor and naive Bayesian classifiers with SDAEs to generate a heterogeneous classification committee to enhance ensemble's diversity. Finally, we validate the proposed SE-SDAE by comparing its performance with mainstream pattern classifiers for cognitive load evaluation to show its effectiveness.Different biological signals are recorded in sleep labs during sleep for the diagnosis and treatment of human sleep problems. Classification of sleep stages with electroencephalography (EEG) is preferred to other biological signals due to its advantages such as providing clinical information, cost-effectiveness, comfort, and ease of use. The evaluation of EEG signals taken during sleep by clinicians is a tiring, time-consuming, and error-prone method. Therefore, it is clinically mandatory to determine sleep stages by using software-supported systems. Like all cla