https://www.selleckchem.com/products/fph1-brd-6125.html Regression tree analysis identified an important threshold effect of antecedent soil moisture on SHC; soils with initial moisture 13%. Furthermore, above this threshold, sites with intermediate to high recent burn frequency (4-10 burns) had significantly greater SHC than unburned control sites. High fuel loads associated with brush cutting and piling increased SHC at barrens sites but not brush or pine sites, suggesting an interaction between vegetation cover and fire effects on SHC. At the local hillslope scale, toe-slopes had greater SHC than summits. Our results suggest that repeated prescribed fires of moderate to high frequency may enhance SHC, thereby reducing soil water retention and potentially restoring functional pine barren processes that limit woody plant growth. Prescribed fire may therefore be an important management tool for reversing mesophication and restoring a global array of open canopy ecosystems.PM2.5 is recognized as an atmospheric pollutant that seriously jeopardizes human health. Emerging evidence indicates that PM2.5 exposure is associated with metabolic disorders. Existing epidemiology and toxicology studies on the health effects of PM2.5 usually focused on its different components and doses, the effects on susceptible populations, or the effects of indoor and outdoor pollution. The underlying mechanisms of exposure time are poorly understood. Liver, as the central organ involved in various metabolisms, has special signaling pathways non-existed in lung and cardiovascular systems. Exacerbation in liver by the prolonged exposure of PM2.5 leads to hepatic function disorder. It is therefore essential to elucidate the mechanism underlying hepatotoxicity after PM2.5 exposure from the perspective of time-response relationship. In this study, targeted metabolomics was utilized to explore the hepatic injury in mice after PM2.5 exposure. Our results showed that prolonged exposure of PM2.5 woul