https://www.selleckchem.com/products/TSU-68(SU6668).html This work provides insight into the interaction of PEDOTPSS/cellulose that will aid in the design of sustainable electronic devices.While green bioplastic based on carbohydrate polymers have showed considerable promise, the methods typically used to prepare them in a single material have remained a significant challenge. In this study, a simple approach is proposed to fabricate high performance cellulose films composed of chemically and physically dual-crosslinked 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofibers (DC TEMPO-CNFs). The hydroxyl groups of TEMPO-CNF suspensions were firstly crosslinked chemically with epichlorohydrin (ECH), and subsequently TEMPO-CNF matrices were crosslinked physically via the strong electrostatic interaction between carboxylate and Ca2+ ions. It was found that the optimized DC TEMPO-CNF films exhibit a good transmittance (90 %) and a high tensile strength (303 MPa). Furthermore, these DC TEMPO-CNF films revealed superior thermal stability and excellent water resistance compared to neat TEMPO-CNF films without crosslinked domains. We believe that these results will pave the way to preparing practical polysaccharide bioplastics with simple, environmentally-friendly manufacturing processes.A biaxially stretched cellulose film with high performance was manufactured from ionic liquid solution through an environmentally friendly, cost effective and facile process. As the transverse stretching ratio (TSR) is increased, the tensile strength and elastic modulus of the biaxially stretched cellulose film in transverse direction (TD) are significantly improved and the coefficient of thermal expansion in TD is reduced while the performance achieves balance in the machine direction (MD) and TD. The transverse stretching regulates the microfibril orientation in the gel film from dominantly uniaxial orientation in MD to homogeneous planar orientation. This microfibril orientatio