https://www.selleckchem.com/products/cerdulatinib.html RNA-seq of microglia derived from the lesions suggested that 3D-cultured MSCs decreased the response of microglia to the ischemic insult. Interestingly, we observed a decreased expression of mincle, a damage-associated molecular patterns (DAMPs) receptor, which induces the production of proinflammatory cytokines, suggestive of a potential mechanism in 3D MSC-mediated enhanced repair to ischemic stroke. Our data indicate that 3D-cultured MSCs exhibit enhanced repair to ischemic stroke, probably through a suppression to ischemia-induced microglial activation. Our data indicate that 3D-cultured MSCs exhibit enhanced repair to ischemic stroke, probably through a suppression to ischemia-induced microglial activation. Plastics now pollute marine environments across the globe. On entering these environments, plastics are rapidly colonised by a diverse community of microorganisms termed the plastisphere. Members of the plastisphere have a myriad of diverse functions typically found in any biofilm but, additionally, a number of marine plastisphere studies have claimed the presence of plastic-biodegrading organisms, although with little mechanistic verification. Here, we obtained a microbial community from marine plastic debris and analysed the community succession across 6 weeks of incubation with different polyethylene terephthalate (PET) products as the sole carbon source, and further characterised the mechanisms involved in PET degradation by two bacterial isolates from the plastisphere. We found that all communities differed significantly from the inoculum and were dominated by Gammaproteobacteria, i.e. Alteromonadaceae and Thalassospiraceae at early time points, Alcanivoraceae at later time points and Vibrionaceae thre little homology with those characterised previously, or that this bacterium uses a novel pathway for PET degradation. Overall, the results of our multi-OMIC characterisation of PET degradation provide