https://www.selleckchem.com/products/gdc-0068.html These new MOFs possess channels decorated by the CO2-philic oxalamide groups and accessible open metal sites, suitable for highly selective CO2 adsorption. Cu-OATA exhibits a significant CO2 adsorption capacity of 25.35 wt % (138.85 cm3/g) at 273 K and 9.84 wt % (50.08 cm3/g) at 298 K under 1 bar with isosteric heat of adsorption (Qst) of about 25 kJ/mol. Cu-OATA presents a very high selectivity of 5.5 for CO2/CH4 and 43.8 for CO2/N2 separation at 0.1 bar, 298 K. Cd-OATA exhibits a CO2 sorption isotherm with hysteresis that can be originated from structural rearrangements. Cd-OATA adsorbs CO2 up to 11.90 wt % (60.58 cm3/g) at 273 K and 2.26 wt % (11.40 cm3/g) at 298 K under 1 bar. Moreover, these new MOFs exhibit high stability in various organic solvents, water, and acidic or basic media. The present work opens a new opportunity in the development of improved and cost-effective MOF adsorbents for highly efficient CO2 capture.Despite being a major global health concern, cerebral ischemia/stroke has limited therapeutic options. Tissue plasminogen activator (tPA) is the only available medication to manage acute ischemic stroke, but this medication is associated with adverse effects and has a narrow therapeutic time window. Curcumin, a polyphenol that is abundantly present in the rhizome of the turmeric plant (Curcuma longa), has shown promising neuroprotective effects in animal models of neurodegenerative diseases, including cerebral ischemia. In the central nervous system (CNS), neuroprotective effects of curcumin have been experimentally validated in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and cerebral ischemia. Curcumin can exert pleiotropic effects in the postischemic brain including antioxidant, anti-inflammatory, antiapoptotic, vasculoprotective, and direct neuroprotective efficacies. Importantly, neuroprotective effects of curcumin has been reported in both ischemic and hemorrhagic stroke