https://www.selleckchem.com/products/ddr1-in-1.html Anisotropic 1D nanostructures with high surface-area-to-volume ratio display the enhanced optoelectronic properties of light-emitting compounds compared to bulk or 2D systems. To study the effect of nanometer-constrained space on photoluminescent behavior of thermally activated delayed fluorescence (TADF) polymeric emitters, electrospinning technique is used to produce nanofibers of TADF emitters. Herein, two TADF polymer (P1 and P3) nanofibers with 90% polyacrylonitrile (PAN) are fabricated and their photophysical properties are studied and compared with their spin-coated film counterparts. The distinguishing polarized photoluminescencent properties of P1/PAN or P3/PAN electrospun nanofibers are obtained due to high orientation degree and superior molecular arrangement. Moreover, the better TADF properties in nanofibers can be observed comparing with their spin-coated films, including longer-lived excited states, higher photoluminescence quantum efficiency, lower internal conversion decay rate, and higher reverse intersystem crossing rate constant.Polymeric derivatives of itaconic acid are becoming increasingly more interesting for research and industry because itaconic acid is accessible from renewable resources. In spite of the structural similarity of poly(itaconic acid derivatives) to poly(methacrylates), they are much less reactive, homopolymerize only sluggishly by free radical polymerization (FRP), and are often obtained with low molar masses and conversions. This has so far limited their use. The reasons for the low reactivity of itaconic acid derivatives (including itaconimides, diitaconates, and diitaconamides) are combined steric and electronic effects, as demonstrated by the body of literature on the FRP homopolymerization kinetics of these monomers which is summarized herein. These problems can be solved to a large extent by using controlled radical polymerization (CRP) techniques, notably atom transf