Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cct251545.html Classical electrocardiographic (ECG) criteria for left ventricular hypertrophy (LVH) are well studied in older populations and patients with hypertension. Their utility in young pre-participation cohorts is unclear. We aimed to develop machine learning models for detection of echocardiogram-diagnosed LVH from ECG, and compare these models with classical criteria. Between November 2009 and December 2014, pre-participation screening ECG and subsequent echocardiographic data was collected from 17 310 males aged 16 to 23, who reported for medical screening prior to military conscription. A final diagnosis of LVH was made during echocardiography, defined by a left ventricular mass index >115 g/m2. The continuous and threshold forms of classical ECG criteria (Sokolow-Lyon, Romhilt-Estes, Modified Cornell, Cornell Product, and Cornell) were compared against machine learning models (Logistic Regression, GLMNet, Random Forests, Gradient Boosting Machines) using receiver-operating characteristics curve analysis. We also compared the important variables identified by machine learning models with the input variables of classical criteria. Prevalence of echocardiographic LVH in this population was 0.82% (143/17310). Classical ECG criteria had poor performance in predicting LVH. Machine learning methods achieved superior performance Logistic Regression (area under the curve [AUC], 0.811; 95% confidence interval [CI], 0.738-0.884), GLMNet (AUC, 0.873; 95% CI, 0.817-0.929), Random Forest (AUC, 0.824; 95% CI, 0.749-0.898), Gradient Boosting Machines (AUC, 0.800; 95% CI, 0.738-0.862). Machine learning methods are superior to classical ECG criteria in diagnosing echocardiographic LVH in the context of pre-participation screening. Machine learning methods are superior to classical ECG criteria in diagnosing echocardiographic LVH in the context of pre-participation screening. Investigate the rate of hearing loss progression and inciden
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत